cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246943 a(4n) = 4*n , a(2n+1) = 8*n+4 , a(4n+2) = 2*n+1.

Original entry on oeis.org

0, 4, 1, 12, 4, 20, 3, 28, 8, 36, 5, 44, 12, 52, 7, 60, 16, 68, 9, 76, 20, 84, 11, 92, 24, 100, 13, 108, 28, 116, 15, 124, 32, 132, 17, 140, 36, 148, 19, 156, 40, 164, 21, 172, 44, 180, 23, 188, 48, 196, 25, 204, 52, 212, 27, 220, 56, 228
Offset: 0

Views

Author

Paul Curtz, Sep 08 2014

Keywords

Comments

Consider the denominators of the Balmer series A061038(n) = 0, 4, 1, 36, 16, 100,... (a permutation of the squares of the nonnegative numbers i.e. A000290(n)) divided by A028310(n)=1,1,2,... . The numerators are a(n). The denominators are A138191(n).
Note that A061038(3n)=9*A061038(n), n>=1.
a(3n) is divisible by the period 3 sequence: repeat 9, 3, 3.

Examples

			Numerators of a(0)=0/1=0, a(1)=4/1=4, a(2)=1/2, a(3)=36/3=12,... .
		

Crossrefs

Programs

  • Maple
    A246943:=n->n*(19-(-1)^n*13+2*cos(n*Pi/2))/8: seq(A246943(n), n=0..100); # Wesley Ivan Hurt, Apr 18 2017
  • Mathematica
    LinearRecurrence[{0,0,0,2,0,0,0,-1},{0,4,1,12,4,20,3,28},60] (* Harvey P. Dale, Jun 22 2022 *)
  • PARI
    concat(0, Vec(x*(4*x^6+x^5+12*x^4+4*x^3+12*x^2+x+4)/((x-1)^2*(x+1)^2*(x^2+1)^2) + O(x^100))) \\ Colin Barker, Sep 08 2014

Formula

Numerators of A061038(n)/A028310(n).
a(2n) = A022998(n).
G.f.: x*(4*x^6+x^5+12*x^4+4*x^3+12*x^2+x+4) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, Sep 08 2014
a(n) = n*(19-13*(-1)^n+(1+(-1)^n)*(-1)^((2*n-1+(-1)^n)/4))/8. - Luce ETIENNE, May 26 2015
a(n) = n*(19-(-1)^n*13+2*cos(n*Pi/2))/8. - Giovanni Resta, May 26 2015