cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A249223 Triangle read by rows: row n gives partial alternating sums of row n of A237048.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 2, 2, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 1, 2, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Hartmut F. W. Hoft, Oct 23 2014

Keywords

Comments

All entries in the triangle are nonnegative since the number of 1's in odd-numbered columns of A237048 prior to column j, 1 <= j <= row(n), is at least as large as the number of 1's in even-numbered columns through column j. As a consequence:
(a) The two adjacent symmetric Dyck paths whose legs are defined by adjacent rows of triangle A237593 never cross each other (see also A235791 and A237591) and the rows in this triangle describe the widths between the legs.
(b) Let legs(n) denote the n-th row of triangle A237591, widths(n) the n-th row of this triangle, and c(n) the rightmost entry in the n-th row of this triangle (center of the Dyck path). Then area(n) = 2 * legs(n) . width(n) - c(n), where "." is the inner product, is the area between the two adjacent symmetric Dyck paths.
(c) For certain sequences of integers, it is known that area(n) = sigma(n); see A238443, A245685, A246955, A246956 and A247687.
Right border gives A067742. - Omar E. Pol, Jan 21 2017
For a proof that T(n, k) = |{ d : d|n and k/2 < d <= k }|, for 1 <= k <= row(n), where row(n) is the length of row n, an identity suggested by Peter Munn, see the link. A corollary to it is that the number of divisors of n in the half-open interval (row(n)/2, row(n)] equals the width of the symmetric representation of n at the diagonal: T(n, row(n)) = | { d : d|n and row(n)/2 < d <= row(n) } |. See also the comments and conjectures of Michel Marcus in A067742 and A237593. - Hartmut F. W. Hoft, Jun 24 2024
From Omar E. Pol, Jul 24 2024: (Start)
Conjecture 1: Every column is a periodic sequence.
Conjecture 2: The periods of the columns 1..8 are respectively: 1, 2, 6, 12, 60, 60, 420, 840.
Question 1: Is the period of the column k equal to A003418(k)? (End).
From Omar E. Pol, Jul 26 2024: (Start)
Column 1 gives A000012.
Column 2 gives A000035.
Conjecture 3: Column 3 gives [2, 0] together with A115357, hence column 3 gives 2 together with A171182.
Question 2: Except the first nine terms of A337976, is the column 4 the same as A337976?
Question 3: Except the first 14 terms of A366981, is the column 5 the same as A366981? (End)
From Hartmut F. W. Hoft, Aug 01 2024: (Start)
Conjectures 1 and 2 are true and the answer to question 1 is affirmative.
By definition, each column k in triangle T237048(n, k) of sequence A237048 is a periodic sequence of period k. Since the k-th term in row n of the triangle T(n, k) = Sum_{i=1..k} (-1)^(i+1) * T237048(n, i), with 1 <= k <= A003056(n), each initial subsequence T(n, 1) .. T(n, k) of row n in this triangle is periodic of period lcm(1, .. , k) = A003418(k). This implies that each column k in this sequence has period A003418(k).
Conjecture 3 and Question 2 are true. Since T237048(n, 1) = 1, T237208(n, 2) = 1 if n odd and 0 if n even, T237048(n, 3) = 1 if 3|n and 0 otherwise, and T237048(n, 4) = 1 if 4|(n-2) and 0 otherwise, equations T249223(n, 3) = 1 - (n mod 2) + delta( n mod 3) and T249223(n, 4) = 1 - (n mod 2) + delta( n mod 3) - delta( (n-2) mod 4) hold where delta(k) = 1 if k = 0 and 0 otherwise. With the 3rd column starting at n = A000217(3) = 6, each period starting in a row that is a multiple of 6 is [ 2 0 1 1 1 0 ], and appropriate shifts yield A115357 and A171182. With the 4th column starting at n = A000217(4) = 10, each period starting in a row n with 12|(n+2) is [ 0 0 2 0 0 1 1 0 1 0 1 1 ], and with a shift of 9 yields the apparently periodic A337976(10), A337976(11), ... (End)

Examples

			Triangle begins:
---------------------------
   n \ k  1  2  3  4  5  6
---------------------------
   1 |    1;
   2 |    1;
   3 |    1, 0;
   4 |    1, 1;
   5 |    1, 0;
   6 |    1, 1, 2;
   7 |    1, 0, 0;
   8 |    1, 1, 1;
   9 |    1, 0, 1;
  10 |    1, 1, 1, 0;
  11 |    1, 0, 0, 0;
  12 |    1, 1, 2, 2;
  13 |    1, 0, 0, 0;
  14 |    1, 1, 1, 0;
  15 |    1, 0, 1, 1, 2;
  16 |    1, 1, 1, 1, 1;
  17 |    1, 0, 0, 0, 0;
  18 |    1, 1, 2, 1, 1;
  19 |    1, 0, 0, 0, 0;
  20 |    1, 1, 1, 1, 2;
  21 |    1, 0, 1, 1, 1, 0;
  22 |    1, 1, 1, 0, 0, 0;
  23 |    1, 0, 0, 0, 0, 0;
  24 |    1, 1, 2, 2, 2, 2;
  ...
The triangle shows that area(n) has width 1 for powers of 2 and that area(p) for primes p consists of only 1 horizontal leg of width 1 (and its symmetric vertical leg in the mirror symmetric duplicate of this triangle).
		

Crossrefs

Programs

  • Maple
    r := proc(n) floor((sqrt(1+8*n)-1)/2) ; end proc: # R. J. Mathar 2015 A003056
    A237048:=proc(n,k) local i; global r;
    if n<(k-1)*k/2 or k>r(n) then return(0); fi;
    if (k mod 2)=1 and (n mod k)=0 then return(1); fi;
    if (k mod 2)=0 and ((n-k/2) mod k) = 0 then return(1); fi;
    return(0);
    end;
    A249223:=proc(n,k) local i; global r,A237048;
    if n<(k-1)*k/2 or k>r(n) then return(0); fi;
    add( (-1)^(i+1)*A237048(n,i),i=1..k);
    end;
    for n from 1 to 12 do lprint([seq(A249223(n,k),k=1..r(n))]); od; # N. J. A. Sloane, Jan 15 2021
  • Mathematica
    cd[n_, k_] := If[Divisible[n, k], 1, 0]; row[n_] := Floor[(Sqrt[8 n + 1] - 1)/2]; a237048[n_, k_] := If[OddQ[k], cd[n, k], cd[n - k/2, k]];
    a1[n_, k_] := Sum[(-1)^(j + 1)*a237048[n, j], {j, 1, k}];
    a2[n_] := Drop[FoldList[Plus, 0, Map[(-1)^(# + 1) &, Range[row[n]]] a237048[n]], 1]; Flatten[Map[a2, Range[24]]] (* data *) (* Corrected by G. C. Greubel, Apr 16 2017 *)
  • PARI
    t237048(n,k) = if (k % 2, (n % k) == 0, ((n - k/2) % k) == 0);
    kmax(n) = (sqrt(1+8*n)-1)/2;
    t(n,k) = sum(j=1, k, (-1)^(j+1)*t237048(n,j));
    tabf(nn) = {for (n=1, nn, for (k=1, kmax(n), print1(t(n,k), ", ");); print(););} \\ Michel Marcus, Sep 20 2015

Formula

T(n, k) = Sum_{j=1..k} (-1)^(j+1)*A237048(n, j), for n>=1 and 1 <= k <= floor((sqrt(8*n + 1) - 1)/2). - corrected by Hartmut F. W. Hoft, Jan 25 2018

A249351 Triangle read by rows in which row n lists the widths of the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Oct 26 2014

Keywords

Comments

Here T(n,k) is defined to be the "k-th width" of the symmetric representation of sigma(n), with n>=1 and 1<=k<=2n-1. Explanation: consider the diagram of the symmetric representation of sigma(n) described in A236104, A237593 and other related sequences. Imagine that the diagram for sigma(n) contains 2n-1 equidistant segments which are parallel to the main diagonal [(0,0),(n,n)] of the quadrant. The segments are located on the diagonal of the cells. The distance between two parallel segment is equal to sqrt(2)/2. T(n,k) is the length of the k-th segment divided by sqrt(2). Note that the triangle contains nonnegative terms because for some n the value of some widths is equal to zero. For an illustration of some widths see Hartmut F. W. Hoft's contribution in the Links section of A237270.
Row n has length 2*n-1.
Row sums give A000203.
If n is a power of 2 then all terms of row n are 1's.
If n is an even perfect number then all terms of row n are 1's except the middle term which is 2.
If n is an odd prime then row n lists (n+1)/2 1's, n-2 zeros, (n+1)/2 1's.
The number of blocks of positive terms in row n gives A237271(n).
The sum of the k-th block of positive terms in row n gives A237270(n,k).
It appears that the middle diagonal is also A067742 (which was conjectured by Michel Marcus in the entry A237593 and checked with two Mathematica functions up to n = 100000 by Hartmut F. W. Hoft).
It appears that the trapezoidal numbers (A165513) are also the numbers k > 1 with the property that some of the noncentral widths of the symmetric representation of sigma(k) are not equal to 1. - Omar E. Pol, Mar 04 2023

Examples

			Triangle begins:
  1;
  1,1,1;
  1,1,0,1,1;
  1,1,1,1,1,1,1;
  1,1,1,0,0,0,1,1,1;
  1,1,1,1,1,2,1,1,1,1,1;
  1,1,1,1,0,0,0,0,0,1,1,1,1;
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
  1,1,1,1,1,0,0,1,1,1,0,0,1,1,1,1,1;
  1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1;
  1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1;
  1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1;
  ...
---------------------------------------------------------------------------
.        Written as an isosceles triangle              Diagram of
.              the sequence begins:               the symmetry of sigma
---------------------------------------------------------------------------
.                                                _ _ _ _ _ _ _ _ _ _ _ _
.                      1;                       |_| | | | | | | | | | | |
.                    1,1,1;                     |_ _|_| | | | | | | | | |
.                  1,1,0,1,1;                   |_ _|  _|_| | | | | | | |
.                1,1,1,1,1,1,1;                 |_ _ _|    _|_| | | | | |
.              1,1,1,0,0,0,1,1,1;               |_ _ _|  _|  _ _|_| | | |
.            1,1,1,1,1,2,1,1,1,1,1;             |_ _ _ _|  _| |  _ _|_| |
.          1,1,1,1,0,0,0,0,0,1,1,1,1;           |_ _ _ _| |_ _|_|    _ _|
.        1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;         |_ _ _ _ _|  _|     |
.      1,1,1,1,1,0,0,1,1,1,0,0,1,1,1,1,1;       |_ _ _ _ _| |      _|
.    1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1;     |_ _ _ _ _ _|  _ _|
.  1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1;   |_ _ _ _ _ _| |
.1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1; |_ _ _ _ _ _ _|
...
From _Omar E. Pol_, Nov 22 2020: (Start)
Also consider the infinite double-staircases diagram defined in A335616.
For n = 15 the diagram with first 15 levels looks like this:
.
Level                         "Double-staircases" diagram
.                                          _
1                                        _|1|_
2                                      _|1 _ 1|_
3                                    _|1  |1|  1|_
4                                  _|1   _| |_   1|_
5                                _|1    |1 _ 1|    1|_
6                              _|1     _| |1| |_     1|_
7                            _|1      |1  | |  1|      1|_
8                          _|1       _|  _| |_  |_       1|_
9                        _|1        |1  |1 _ 1|  1|        1|_
10                     _|1         _|   | |1| |   |_         1|_
11                   _|1          |1   _| | | |_   1|          1|_
12                 _|1           _|   |1  | |  1|   |_           1|_
13               _|1            |1    |  _| |_  |    1|            1|_
14             _|1             _|    _| |1 _ 1| |_    |_             1|_
15            |1              |1    |1  | |1| |  1|    1|              1|
.
Starting from A196020 and after the algorithm described in A280850 and A296508 applied to the above diagram we have a new diagram as shown below:
.
Level                             "Ziggurat" diagram
.                                          _
6                                         |1|
7                            _            | |            _
8                          _|1|          _| |_          |1|_
9                        _|1  |         |1   1|         |  1|_
10                     _|1    |         |     |         |    1|_
11                   _|1      |        _|     |_        |      1|_
12                 _|1        |       |1       1|       |        1|_
13               _|1          |       |         |       |          1|_
14             _|1            |      _|    _    |_      |            1|_
15            |1              |     |1    |1|    1|     |              1|
.
The 15th row
of this seq:  [1,1,1,1,1,1,1,1,0,0,0,1,1,1,2,1,1,1,0,0,0,1,1,1,1,1,1,1,1]
The 15th row
of A237270:   [              8,            8,            8              ]
The 15th row
of A296508:   [              8,      7,    1,    0,      8              ]
The 15th row
of A280851    [              8,      7,    1,            8              ]
.
The number of horizontal steps (or 1's) in the successive columns of the above diagram gives the 15th row of this triangle.
For more information about the parts of the symmetric representation of sigma(n) see A237270. For more information about the subparts see A239387, A296508, A280851.
More generally, it appears there is the same correspondence between the original diagram of the symmetric representation of sigma(n) and the "Ziggurat" diagram of n. (End)
		

Crossrefs

Programs

  • Mathematica
    (* function segments are defined in A237270 *)
    a249351[n_] := Flatten[Map[segments, Range[n]]]
    a249351[10] (* Hartmut F. W. Hoft, Jul 20 2022 *)

A244250 Triangle read by rows in which row n lists the widths in the first octant of the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Omar E. Pol, Oct 26 2014

Keywords

Comments

For the definition of k-th width of the symmetric representation of sigma(n) see A249351.
Row n list the first n terms of the n-th row of A249351.
It appears that the leading diagonal is also A067742 (which was conjectured by Michel Marcus in the entry A237593 and checked with two Mathematica functions up to n = 100000 by Hartmut F. W. Hoft).
For more information see A237591, A237593.

Examples

			Triangle begins:
1;
1, 1;
1, 1, 0;
1, 1, 1, 1;
1, 1, 1, 0, 0;
1, 1, 1, 1, 1, 2;
1, 1, 1, 1, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1, 1;
1, 1, 1, 1, 1, 0, 0, 1, 1;
1, 1, 1, 1, 1, 1, 1, 1, 1, 0;
1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0;
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2;
1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0;
...
		

Crossrefs

A279105 a(n), n>1, is the smallest number k whose symmetric representation of sigma(k) has two parts and has a larger number of legs in its two parts than a(n-1); a(1)=3.

Original entry on oeis.org

3, 10, 44, 78, 136, 348, 592, 666, 820, 1272, 1652, 1830, 2144, 2628, 3320, 3738, 4656, 5886, 6328, 7620, 8384, 9042, 10728, 13040, 14532, 15752, 16290, 18528, 21100, 21944, 24084, 25424, 28920, 32382, 32896, 35508, 39340, 42192, 46050, 48828
Offset: 1

Views

Author

Hartmut F. W. Hoft, Dec 06 2016

Keywords

Comments

A number k with two parts in its symmetric representation of sigma(k) [ssrs(k) = 2] has the form k = q*p with q in A174973, p prime and 2*q < p. This implies that 2*q <= row(k) < p and the first 0 in the k-th row of A249223 (having row(k) = floor((sqrt(8*k+1)-1)/2) entries) occurs at position 2*q so that 2*q-1 is the number of legs in each of the two parts. Therefore, the numbers 2*q-1 with q in A174973 are the only possible leg counts when ssrs(k) = 2, and for given q in A174973 and smallest prime p(q) > 2*q the number k = q*p(q) is the smallest with a leg count of 2*q-1. Consequently, each number q*p in the column of the irregular triangle A239929 labeled by q in A174793 with p prime satisfies ssrs(q*p) = 2*q-1.
a(1) = 3 is the only odd number since 1 is the only odd number in A174973.
Every number n = 2^m * p, m >= 0, 2^(m+1) < p and p prime, in this sequence is the sum of 2^(m+1) consecutive positive integers which includes every number in A246956.

Examples

			a(3)=44 is the smallest number whose symmetric representation has 2 parts and 7 legs in each part.
a(4)=78 is the smallest number whose symmetric representation has 2 parts and 11 legs in each part.
No number k whose symmetric representation of sigma(k) has 2 parts can have 21 legs in its parts since there is no q in A174973 such that 2*q - 1 = 21.
		

Crossrefs

Right border of A239929.
Supersequence of A246956 and A262259.

Programs

  • Mathematica
    a174973Q[n_] := Module[{d=Divisors[n]}, Select[Rest[d] - 2*Most[d], #>0&]=={}]
    a279105[n_] := Map[# * NextPrime[2*#]&, Select[Range[n], a174973Q]]
    a279105[150] (* sequence data *)

Formula

a(n) = A174973(n) * A007918(2 * A174973(n) + 1).

A378471 Numbers m whose symmetric representation of sigma(m), SRS(m), has at least 2 parts the first of which has width 1.

Original entry on oeis.org

3, 5, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 92, 93, 94, 95, 97, 98, 99, 101, 103, 105
Offset: 1

Views

Author

Hartmut F. W. Hoft, Nov 27 2024

Keywords

Comments

Numbers m = 2^k * q, k >= 0 and q > 1 odd, without odd prime factors p < 2^(k+1).
This sequence is a proper subsequence of A238524. Numbers 78 = A370206(1) = A238524(55) and 102 = A237287(72) are not in this sequence since their width pattern (A341969) is 1210121.
A000079 is not a subsequence since SRS(2^k), k>=0, consists of a single part of width 1.
Let m = 2^k * q, k >= 0 and q > 1 odd, be a number in this sequence and s the size of the first part of SRS(m) which has width 1 and consists of 2^(k+1) - 1 legs of width 1. Therefore, s = Sum_{i=1..2^(k+1)-1} a237591(m, i) = a235791(m, 1) - a235791(m, 2^(k+1)) = ceiling((m+1)/1 - (1+1)/2) - ceiling((m+1)/2^(k+1) - (2^(k+1) + 1)/2) = (2^(k+1) - 1)(q+1)/2. In other words, point (m, s) is on the line s(m) = (2^(k+1) - 1)/2^(k+1) * m + (2^(k+1) - 1)/2.
For every odd number m in this sequence, the first part of SRS(m) has size (m+1)/2.
Let u = 2^k * Product_{i=1..PrimePi(2^(k+1)} p_i, where p_i is the i-th prime, and let v be the number of elements in this sequence that are in the set V = {m = 2^k * q | 1 < m <= u } then T(j + t*v, k) = T(j, k) + t*u, 1 <= j and 1 <= t, holds for the elements in column k.

Examples

			a(5) = 10 is in the sequence since SRS(10) = {9, 9} consists of 2 parts of width 1 and of sizes 9 = (2^2 - 1)(5+1)/2.
a(15) = 25 is in the sequence since the first part of SRS(25) = {13, 5, 13} has width 1 and has size 13 = (2^1 - 1)(25+1)/2.
a(28) = 44 is in the sequence since SRS(44) = {42, 42} has width 1 and has size 42 = (2^3 - 1)(11+1)/2.
The upper left hand 11 X 11 section of array T(j, k) shows the j-th number m in this sequence of the form m = 2^k * q with q odd. The first part of SRS(m) of every number in column k consists of 2^(k+1) - 1 legs of width 1.
j\k| 0   1   2    3    4     5     6      7      8       9       10  ...
------------------------------------------------------------------------
1  | 3   10  44   136  592   2144  8384   32896  133376  527872  2102272
2  | 5   14  52   152  656   2272  8768   33664  133888  528896  2112512
3  | 7   22  68   184  688   2336  8896   34432  138496  531968  2118656
4  | 9   26  76   232  752   2528  9536   34688  140032  537088  2130944
5  | 11  34  92   248  848   2656  9664   35456  142592  538112  2132992
6  | 13  38  116  296  944   2848  10048  35968  144128  543232  2137088
7  | 15  46  124  328  976   3104  10432  36224  145664  544256  2139136
8  | 17  50  148  344  1072  3232  10688  37504  146176  547328  2149376
9  | 19  58  164  376  1136  3296  11072  39296  147712  556544  2161664
10 | 21  62  172  424  1168  3424  11456  39808  150272  558592  2163712
11 | 23  70  188  472  1264  3488  11584  40064  151808  559616  2180096
...
Row 1 is A246956(n), n>=1.
Column 0 is A005408(n) with T(j + 1, 0) = T(j, 0) + 2, n>=1.
Column 1 is A091999(n) with T(j + 2, 1) = T(j, 1) + 12, n>=2.
Column 2 is A270298(n) with T(j + 48, 2) = T(j, 2) + 840, n>=1.
Column 3 is A270301(n) with T(j + 5760, 3) = T(j, 3) + 240240, n>=1.
		

Crossrefs

Programs

  • Mathematica
    (* partsSRS[] and widthPattern[ ] are defined in A377654 *)
    a378471[m_, n_] := Select[Range[m, n], Length[partsSRS[#]]>1&&widthPattern[#][[1;;2]]=={1, 0}&]
    a378471[1, 105]

A365440 Square array read by upward antidiagonals: T(n,k) is the n-th number j with the property that the parts of the symmetric representation of sigma(j) are two s-gon of width 1, where s = 2^(k+1), n >= 1, k >= 1.

Original entry on oeis.org

3, 5, 10, 7, 14, 44, 11, 22, 52, 136, 13, 26, 68, 152, 592, 17, 34, 76, 184, 656
Offset: 1

Views

Author

Omar E. Pol, Sep 25 2023

Keywords

Comments

For column k = 1, 2, 3, 4, 5, ... the number of sides of the mentioned s-gon are respectively 4, 8, 16, 32, 64, ...
Conjecture 1: column k gives the row numbers of the triangle A364639 where the rows are [1, A036563(k+1) zeros, -1, 1] or where the rows start with [1, A036563(k+1) zeros, -1, 1] and the remaining terms are zeros.
Conjecture 2: every column gives a subsequence of A246955.
Conjecture 3: the sequence is infinite.
Observation 1: at least the terms <= 199 in increasing order coincide with at least the first 82 terms of the intersection of A071561 and A365406.
Observation 2: in the Example section of A246955 there is an irregular triangle. It seems that the terms sorted of the triangle give the sequence A246955. At least the first r(k) terms in the column (k - 1) of the triangle coincide with the first r(k) terms of the column k of this square array, where r(k) are 19, 18, 16, 14, 7 for k = 1..5 respectively.
Observation 3: at least the first five terms of the row 1 coincide with the first five terms of A246956.

Examples

			The corner of the square array is as shown below:
   3, 10,  44, 136, 592, ...
   5, 14,  52, 152, 656, ...
   7, 22,  68, 184, 688, ...
  11, 26,  76, 232, 752, ...
  13, 34,  92, 248, 848, ...
  17, 38, 116, 296, 944, ...
  19, 46, 124, 328, 976, ...
  ...
		

Crossrefs

Showing 1-6 of 6 results.