cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A246985 Expansion of (1-8*x+14*x^2)/((1-2*x)*(1-3*x)*(1-6*x)).

Original entry on oeis.org

1, 3, 11, 49, 251, 1393, 8051, 47449, 282251, 1686433, 10097891, 60526249, 362976251, 2177317873, 13062296531, 78368963449, 470199366251, 2821153019713, 16926788715971, 101560344351049, 609360902796251, 3656161927895953, 21936961102828211, 131621735227521049, 789730317205170251, 4738381620767930593
Offset: 0

Views

Author

N. J. A. Sloane, Sep 15 2014

Keywords

Comments

From Álvar Ibeas, Mar 25 2015: (Start)
Number of isomorphism classes of 3-fold coverings of a connected graph with circuit rank n [Kwak and Lee].
Number of orbits of the conjugacy action of Sym(3) on Sym(3)^n [Kwak and Lee].
(End)

Crossrefs

Apart from first term, same as A074528. Third row of A160449.

Programs

  • Magma
    [n le 3 select 2*Factorial(n)-1 else 11*Self(n-1)-36*Self(n-2)+36*Self(n-3): n in [1..30]];
    
  • Mathematica
    Table[2^(n - 1) + 3^(n - 1) + 6^(n - 1), {n, 0, 30}] (* Bruno Berselli, Mar 25 2015 *)
    LinearRecurrence[{11,-36,36},{1,3,11},30] (* Harvey P. Dale, Jan 17 2019 *)
  • PARI
    Vec((1-8*x+14*x^2)/((1-2*x)*(1-3*x)*(1-6*x)) + O(x^30)) \\ Michel Marcus, Jan 14 2016

Formula

G.f.: (1-8*x+14*x^2)/((1-2*x)*(1-3*x)*(1-6*x)).
a(n) = 11*a(n-1) - 36*a(n-2) + 36*a(n-3) for n>2. [Bruno Berselli, Mar 25 2015]
a(n) = 2^(n-1) + 3^(n-1) + 6^(n-1). - Álvar Ibeas, Mar 25 2015

Extensions

Signature corrected and Ibeas formula adapted to the offset by Bruno Berselli, Mar 25 2015