A247219 Positive numbers m such that m^2 - 1 divides 2^m - 1.
2, 4, 16, 36, 256, 456, 1296, 2556, 4356, 6480, 8008, 11952, 26320, 44100, 47520, 47880, 49680, 57240, 65536, 74448, 84420, 97812, 141156, 157080, 165600, 225456, 278496, 310590, 333432, 365940, 403900, 419710, 476736, 557040, 560736, 576720, 647088, 1011960, 1033056, 1204560, 1206180
Offset: 1
Keywords
Examples
2 is in this sequence because 2^2 - 1 = 3 divides 2^2 - 1 = 3.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..105
Crossrefs
Cf. A081762.
Programs
-
Magma
[n: n in [2..122222] | Denominator((2^n - 1)/(n^2 - 1)) eq 1];
-
Mathematica
Select[Range[10^4], Divisible[2^# - 1, #^2 - 1] &] (* Alonso del Arte, Nov 26 2014 *) Select[Range[2,121*10^4],PowerMod[2,#,#^2-1]==1&] (* Harvey P. Dale, Sep 08 2021 *)
-
PARI
isok(n) = ((2^n - 1) % (n^2 - 1)) == 0; \\ Michel Marcus, Nov 26 2014
-
PARI
forstep(n=0,1e8,2, Mod(2,n^2-1)^n-1 || print1(n", ")) \\ M. F. Hasler, Jul 25 2015
-
Python
from gmpy2 import powmod A247219_list = [n for n in range(2,10**7) if powmod(2,n,n*n-1) == 1] # Chai Wah Wu, Dec 03 2014
Extensions
Corrected a(24) by Chai Wah Wu, Dec 03 2014
Comments