cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247219 Positive numbers m such that m^2 - 1 divides 2^m - 1.

Original entry on oeis.org

2, 4, 16, 36, 256, 456, 1296, 2556, 4356, 6480, 8008, 11952, 26320, 44100, 47520, 47880, 49680, 57240, 65536, 74448, 84420, 97812, 141156, 157080, 165600, 225456, 278496, 310590, 333432, 365940, 403900, 419710, 476736, 557040, 560736, 576720, 647088, 1011960, 1033056, 1204560, 1206180
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 26 2014

Keywords

Comments

Contains all numbers of the form m = A001146(k) = 2^2^k, k >= 0; and those with k > 1 seem to form the intersection with A247165. - M. F. Hasler, Jul 25 2015

Examples

			2 is in this sequence because 2^2 - 1 = 3 divides 2^2 - 1 = 3.
		

Crossrefs

Cf. A081762.

Programs

  • Magma
    [n: n in [2..122222] | Denominator((2^n - 1)/(n^2 - 1)) eq 1];
    
  • Mathematica
    Select[Range[10^4], Divisible[2^# - 1, #^2 - 1] &] (* Alonso del Arte, Nov 26 2014 *)
    Select[Range[2,121*10^4],PowerMod[2,#,#^2-1]==1&] (* Harvey P. Dale, Sep 08 2021 *)
  • PARI
    isok(n) = ((2^n - 1) % (n^2 - 1)) == 0; \\ Michel Marcus, Nov 26 2014
    
  • PARI
    forstep(n=0,1e8,2, Mod(2,n^2-1)^n-1 || print1(n", ")) \\ M. F. Hasler, Jul 25 2015
  • Python
    from gmpy2 import powmod
    A247219_list = [n for n in range(2,10**7) if powmod(2,n,n*n-1) == 1]
    # Chai Wah Wu, Dec 03 2014
    

Extensions

Corrected a(24) by Chai Wah Wu, Dec 03 2014