cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A001146 a(n) = 2^(2^n).

Original entry on oeis.org

2, 4, 16, 256, 65536, 4294967296, 18446744073709551616, 340282366920938463463374607431768211456, 115792089237316195423570985008687907853269984665640564039457584007913129639936
Offset: 0

Views

Author

Keywords

Comments

Or, write previous term in base 2, read in base 4.
a(1) = 2, a(n) = smallest power of 2 which does not divide the product of all previous terms.
Number of truth tables generated by Boolean expressions of n variables. - C. Bradford Barber (bradb(AT)shore.net), Dec 27 2005
From Ross Drewe, Feb 13 2008: (Start)
Or, number of distinct n-ary operators in a binary logic. The total number of n-ary operators in a k-valued logic is T = k^(k^n), i.e., if S is a set of k elements, there are T ways of mapping an ordered subset of n elements from S to an element of S. Some operators are "degenerate": the operator has arity p, if only p of the n input values influence the output. Therefore the set of operators can be partitioned into n+1 disjoint subsets representing arities from 0 to n.
For n = 2, k = 2 gives the familiar Boolean operators or functions, C = F(A,B). There are 2^2^2 = 16 operators, composed of: arity 0: 2 operators (C = 0 or 1), arity 1: 4 operators (C = A, B, not(A), not(B)), arity 2: 10 operators (including well-known pairs AND/NAND, OR/NOR, XOR/EQ). (End)
From José María Grau Ribas, Jan 19 2012: (Start)
Or, numbers that can be formed using the number 2, the power operator (^), and parenthesis. (End) [The paper by Guy and Selfridge (see also A003018) shows that this is the same as the current sequence. - N. J. A. Sloane, Jan 21 2012]
a(n) is the highest value k such that A173419(k) = n+1. - Charles R Greathouse IV, Oct 03 2012
Let b(0) = 8 and b(n+1) = the smallest number not in the sequence such that b(n+1) - Product_{i=0..n} b(i) divides b(n+1)*Product_{i=0..n} b(i). Then b(n) = a(n) for n > 0. - Derek Orr, Jan 15 2015
Twice the number of distinct minimal toss sequences of a coin to obtain all sequences of length n, which is 2^(2^n-1). This derives from the 2^n ways to cut each of the de Bruijn sequences B(2,n). - Maurizio De Leo, Feb 28 2015
I conjecture that { a(n) ; n>1 } are the numbers such that n^4-1 divides 2^n-1, intersection of A247219 and A247165. - M. F. Hasler, Jul 25 2015
Erdős has shown that it is an irrationality sequence (see Guy reference). - Stefano Spezia, Oct 13 2024

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section E24.
  • D. E. Knuth, The Art of Computer Programming, Vol. 4A, Section 7.1.1, p. 79.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

Formula

a(n+1) = (a(n))^2.
1 = Sum_{n>=0} a(n)/A051179(n+1) = 2/3 + 4/15 + 16/255 + 256/65535, ..., with partial sums: 2/3, 14/15, 254/255, 65534/65535, ... - Gary W. Adamson, Jun 15 2003
a(n) = A000079(A000079(n)). - Robert Israel, Jan 15 2015
Sum_{n>=0} 1/a(n) = A007404. - Amiram Eldar, Oct 14 2020
From Amiram Eldar, Jan 28 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = 2.
Product_{n>=0} (1 - 1/a(n)) = A215016. (End)

A247165 Numbers m such that m^2 + 1 divides 2^m - 1.

Original entry on oeis.org

0, 16, 256, 8208, 65536, 649800, 1382400, 4294967296
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 30 2014

Keywords

Comments

Contains 2^(2^k) = A001146(k) for k >= 2. - Robert Israel, Dec 02 2014
a(9) > 10^12. - Hiroaki Yamanouchi, Sep 16 2018
For each n, a(n)^2 + 1 belongs to A176997, and thus a(n) belongs to either A005574 or A135590. - Max Alekseyev, Feb 08 2024

Examples

			0 is in this sequence because 0^2 + 1 = 1 divides 2^0 - 1 = 1.
		

Crossrefs

Cf. A247219 (n^2 - 1 divides 2^n - 1), A247220 (n^2 + 1 divides 2^n + 1).

Programs

  • Magma
    [n: n in [1..100000] | Denominator((2^n-1)/(n^2+1)) eq 1];
    
  • Maple
    select(n -> (2 &^ n - 1) mod (n^2 + 1) = 0, [$1..10^6]); # Robert Israel, Dec 02 2014
  • Mathematica
    a247165[n_Integer] := Select[Range[0, n], Divisible[2^# - 1, #^2 + 1] &]; a247165[1500000] (* Michael De Vlieger, Nov 30 2014 *)
  • PARI
    for(n=0,10^9,if(Mod(2,n^2+1)^n==+1,print1(n,", "))); \\ Joerg Arndt, Nov 30 2014
    
  • Python
    A247165_list = [n for n in range(10**6) if n == 0 or pow(2,n,n*n+1) == 1]
    # Chai Wah Wu, Dec 04 2014

Extensions

a(8) from Chai Wah Wu, Dec 04 2014
Edited by Jon E. Schoenfield, Dec 06 2014

A271842 Positive numbers m such that m^2 - 1 divides 4^m - 1.

Original entry on oeis.org

2, 4, 6, 16, 36, 52, 66, 256, 378, 456, 1296, 1470, 1548, 1800, 2002, 2556, 4356, 6480, 8008, 11952, 23580, 26320, 33930, 36636, 37170, 43290, 44100, 47520, 47880, 49680, 57240, 65536, 74448, 84420, 97812, 101920, 127050, 134946, 139860, 141156, 157080, 164880, 165600, 209220, 225456
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 15 2016

Keywords

Examples

			2 is in this sequence because (4^2 - 1)/(2^2 - 1) = 5.
		

Crossrefs

Cf. positive numbers m such that m^2 - 1 divides (2^k)^m - 1:
A247219 (k=1), this sequence (k=2), A242062 (k=3).

Programs

  • Magma
    [0] cat [n: n in [2..240000] | Denominator((4^n-1)/(n^2-1)) eq 1];
    
  • Maple
    A271842:=n->`if`((4^n-1) mod (n^2-1) = 0, n, NULL): seq(A271842(n), n=2..10^4); # Wesley Ivan Hurt, Apr 18 2016
  • Mathematica
    Select[Range[1, 100], IntegerQ[(4^# - 1)/(#^2 - 1)] &] (* G. C. Greubel, Apr 15 2016 *)
  • PARI
    is(n)=Mod(4,n^2-1)^n==1 \\ Charles R Greathouse IV, Apr 15 2016

A272062 Positive numbers k such that k^2 - 1 divides 8^k - 1.

Original entry on oeis.org

2, 4, 8, 10, 16, 22, 36, 40, 64, 96, 100, 196, 210, 256, 280, 316, 456, 560, 820, 1200, 1236, 1296, 1360, 1408, 1600, 1870, 2380, 2556, 3516, 3616, 4096, 4200, 4356, 5656, 6112, 6256, 6480, 8008, 8688, 10192, 10356, 11440, 11952, 12160, 13728, 14950, 16192, 17020, 19432, 21880, 22036
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 19 2016

Keywords

Comments

From Robert Israel, Jun 08 2018: (Start)
All terms are even.
Are 2, 8 and 560 the only terms == 2 (mod 6)? There are no others up to 3*10^9. (End)

Examples

			a(1) = 2 because (8^2 - 1)/(2^2 - 1) = 21.
		

Crossrefs

Cf. positive numbers n such that n^2 - 1 divides (2^k)^n - 1: A247219 (k=1), A271842 (k=2), this sequence (k=3).

Programs

  • Magma
    [0] cat [n: n in [2..30000] | Denominator((8^n-1)/(n^2-1)) eq 1];
    
  • Maple
    A272062:=n->`if`((8^n-1) mod (n^2-1) = 0, n, NULL): seq(A272062(n), n=2..5*10^4); # Wesley Ivan Hurt, Apr 21 2016
  • Mathematica
    Select[Range[2, 22100], Divisible[8^# - 1, #^2 - 1] &] (* Michael De Vlieger, Apr 19 2016 *)
  • PARI
    is(n)=Mod(8,n^2-1)^n==1 \\ Charles R Greathouse IV, Apr 19 2016

A281363 Smallest m>0 such that (2*n)^2 - 1 divides (2^m)^(2*n) - 1.

Original entry on oeis.org

1, 1, 2, 3, 3, 5, 6, 1, 4, 9, 3, 55, 90, 9, 14, 5, 30, 1, 18, 3, 10, 21, 6, 161, 84, 2, 130, 45, 9, 29, 30, 3, 2, 33, 11, 35, 90, 15, 5, 351, 27, 82, 28, 7, 22, 15, 90, 3, 120, 3, 50, 51, 6, 53, 18, 9, 154, 33, 12, 11, 110, 25, 50, 7, 7, 195, 18, 9, 34, 69
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Apr 30 2016

Keywords

Examples

			a(3) = 2 because (2*3)^2 - 1 = 35 divides (2^2)^(2*3) - 1 = 4095.
		

Crossrefs

Cf. positive numbers n such that n^2 - 1 divides (2^k)^n - 1: A247219 (k=1), A271842 (k=2), A272062 (k=3).

Programs

  • Mathematica
    Table[SelectFirst[Range@ 1200, Divisible[(2^#)^(2 n) - 1, (2 n)^2 - 1] &], {n, 84}] (* Michael De Vlieger, May 01 2016, Version 10 *)
    a[n_] := Block[{m=1}, While[ PowerMod[2^m, 2*n, 4*n^2-1] != 1, m++]; m]; Array[a, 100] (* Giovanni Resta, May 05 2016 *)
  • Python
    def A281363(n):
        m, q = 1, 4*n**2-1
        p = pow(2, 2*n, q)
        r = p
        while r != 1:
            m += 1
            r = (r*p) % q
        return m # Chai Wah Wu, Jan 28 2017

A247205 Numbers k such that 2*k^2 - 1 divides 2^k - 1.

Original entry on oeis.org

1, 18480, 8388480
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Nov 30 2014

Keywords

Comments

a(4) > 2*10^10. - Chai Wah Wu, Dec 06 2014

Examples

			1 is in this sequence because 2*1^2 - 1 = 1 divides 2^1 - 1 = 1.
		

Crossrefs

Programs

  • Magma
    [n: n in [1..100000] | Denominator((2^n-1)/(2*n^2-1)) eq 1];
    
  • PARI
    for(n=1,10^9,if(Mod(2,2*n^2-1)^n==+1,print1(n,", "))); \\ Joerg Arndt, Nov 30 2014

Extensions

a(3) from Joerg Arndt, Nov 30 2014
Showing 1-6 of 6 results.