A247303 Convolution of A010059(n) with itself.
1, 0, 0, 2, 0, 2, 3, 0, 2, 4, 3, 2, 5, 2, 2, 8, 2, 4, 7, 2, 7, 6, 4, 8, 7, 4, 6, 10, 4, 10, 11, 0, 10, 12, 7, 10, 11, 6, 8, 16, 9, 8, 12, 10, 10, 14, 13, 8, 15, 12, 10, 18, 10, 14, 17, 8, 14, 20, 15, 10, 21, 10, 10, 32, 10, 12, 23, 10, 19, 22, 16, 16, 21, 16
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
- Tanya Khovanova, There are no coincidences, arXiv:1410.2193 [math.CO], 2014.
Programs
-
Haskell
a247303 n = a247303_list !! n a247303_list = f [head a010059_list] $ tail a010059_list where f xs (z:zs) = (sum $ zipWith (*) xs (reverse xs)) : f (z : xs) zs -- Reinhard Zumkeller, Sep 14 2014
-
Mathematica
a59[n_]:= Mod[SeriesCoefficient[(1+Sqrt[(1-3x)/(1+x)])/(2(1+x)), {x, 0, n}], 2]; a[n_] := Sum[a59[k] a59[n-k], {k, 0, n}]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Dec 15 2018 *) Table[Sum[(1-ThueMorse[k])*(1-ThueMorse[n - k]), {k, 0, n}], {n, 0, 80}] (* G. C. Greubel, Apr 03 2019 *)
-
PARI
nh(n)=!(hammingweight(n)%2); a(n) = sum(k=0, n, nh(k)*nh(n-k)); \\ Michel Marcus, Sep 12 2014
-
PARI
m0 = [1,0,0,0,0,0; 0,0,1,0,0,0; 0,0,0,0,1,0; -1,2,-2,1,0,1; -2,2,0,0,-1,2; -1,2,-3,0,1,2]; m1 = [0,1,0,0,0,0; 0,0,0,1,0,0; 0,0,0,0,0,1; 0,1,-1,-2,1,2; -2,2,-2,2,0,1; -2,3,-2,-1,0,3]; a(n)=my(t=[1,0,0,0,0,0]); forstep(i=exponent(n),0,-1, t*=if(bittest(n,i),m1,m0)); t*[1,0,0,2,0,2]~; \\ Following Shallit; for more efficiency, calculate by bytes instead of bits. Charles R Greathouse IV, Jun 23 2021
-
Sage
[sum((1-sloane.A010060(k))*(1-sloane.A010060(n-k)) for k in (0..n)) for n in (0..80)] # G. C. Greubel, Apr 03 2019
Formula
G.f.: (1/4)*(1/(1 - x) + Product_{k>=0} (1 - x^(2^k)))^2. - Ilya Gutkovskiy, Apr 03 2019
From Jeffrey Shallit, Jun 22 2021: (Start)
a(n) = v mu(x) w, where x is n expressed in base 2, and
v = [ 1, 0, 0, 0, 0, 0]
mu(0) = [[ 1, 0, 0, 0, 0, 0],
[ 0, 0, 1, 0, 0, 0],
[ 0, 0, 0, 0, 1, 0],
[-1, 2,-2, 1, 0, 1],
[-2, 2, 0, 0,-1, 2],
[-1, 2,-3, 0, 1, 2]]
mu(1) = [[ 0, 1, 0, 0, 0, 0],
[ 0, 0, 0, 1, 0, 0],
[ 0, 0, 0, 0, 0, 1],
[ 0, 1,-1,-2, 1, 2],
[-2, 2,-2, 2, 0, 1],
[-2, 3,-2,-1, 0, 3]]
w = [ 1, 0, 0, 2, 0, 2] (End)
Extensions
More terms from Michel Marcus, Sep 12 2014
Comments