cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247608 a(n) = Sum_{k=0..3} binomial(6,k)*binomial(n,k).

Original entry on oeis.org

1, 7, 28, 84, 195, 381, 662, 1058, 1589, 2275, 3136, 4192, 5463, 6969, 8730, 10766, 13097, 15743, 18724, 22060, 25771, 29877, 34398, 39354, 44765, 50651, 57032, 63928, 71359, 79345, 87906, 97062, 106833, 117239, 128300, 140036, 152467, 165613, 179494
Offset: 0

Views

Author

Vincenzo Librandi, Sep 22 2014

Keywords

Crossrefs

Programs

  • Magma
    [(6+31*n-15*n^2+20*n^3)/6: n in [0..40]];
    
  • Magma
    [1+6*Binomial(n,1)+15*Binomial(n,2)+20*Binomial(n,3): n in [0..40]];
    
  • Magma
    I:=[1, 7, 28, 84]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..40]];
    
  • Mathematica
    Table[(6 + 31 n - 15 n^2 + 20 n^3)/6, {n, 0, 50}] (* or *) CoefficientList[Series[(1 + 3 x + 6 x^2 + 10 x^3)/(1-x)^4,{x, 0, 50}], x]
  • PARI
    Vec((1+3*x+6*x^2+10*x^3)/(1-x)^4 + O (x^50)) \\ Michel Marcus, Sep 22 2014
    
  • Sage
    m=3; [sum((binomial(2*m,k)*binomial(n,k)) for k in (0..m)) for n in (0..40)] # Bruno Berselli, Sep 22 2014

Formula

G.f.: (1+3*x+6*x^2+10*x^3)/(1-x)^4.
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4).
a(n) = (6+31*n-15*n^2+20*n^3)/6.
a(n) = 1+6*Binomial(n,1)+15*Binomial(n,2)+20*Binomial(n,3).