cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A247612 a(n) = Sum_{k=0..7} binomial(14,k)*binomial(n,k).

Original entry on oeis.org

1, 15, 120, 680, 3060, 11628, 38760, 116280, 316767, 788161, 1805100, 3840420, 7660250, 14446134, 25947612, 44668692, 74091645, 118941555, 185495056, 281936688, 418766304, 609260960, 869994720, 1221419808, 1688512539, 2301487461, 3096583140, 4116923020
Offset: 0

Views

Author

Vincenzo Librandi, Sep 22 2014

Keywords

Crossrefs

Programs

  • Magma
    [(1680+386012*n-958048*n^2+943761*n^3-455455*n^4+123123*n^5- 17017*n^6+1144*n^7)/1680: n in [0..40]];
    
  • Magma
    I:=[1,15,120,680,3060,11628,38760, 116280]; [n le 8 select I[n] else 8*Self(n-1)-28*Self(n-2)+56*Self(n-3)-70*Self(n-4)+56*Self(n-5) -28*Self(n-6)+8*Self(n-7)-Self(n-8): n in [1..40]];
    
  • Mathematica
    Table[(1680 + 386012 n - 958048 n^2 + 943761 n^3 - 455455 n^4 + 123123 n^5 - 17017 n^6 + 1144 n^7)/1680, {n, 0, 40}] (* or *) CoefficientList[Series[(1 + 7 x + 28 x^2 + 84 x^3 + 210 x^4 + 462 x^5 + 924 x^6 + 1716 x^7)/(1 - x)^8, {x, 0, 40}], x]
    LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{1,15,120,680,3060,11628,38760,116280},30] (* Harvey P. Dale, May 12 2017 *)
  • Sage
    m=7; [sum((binomial(2*m,k)*binomial(n,k)) for k in (0..m)) for n in (0..40)] # Bruno Berselli, Sep 22 2014

Formula

G.f.: (1 + 7*x + 28*x^2 + 84*x^3 + 210*x^4 + 462*x^5 + 924*x^6 + 1716*x^7) / (1-x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
a(n) = (1680 + 386012*n - 958048*n^2 + 943761*n^3 - 455455*n^4 + 123123*n^5 - 17017*n^6 + 1144*n^7)/1680.

Extensions

Definition edited by Robert Israel, Sep 22 2014

A247615 a(n) = Sum_{k=0..10} binomial(20,k)*binomial(n,k).

Original entry on oeis.org

1, 21, 231, 1771, 10626, 53130, 230230, 888030, 3108105, 10015005, 30045015, 84504355, 223651350, 558350430, 1318250890, 2952624906, 6296642121, 12834146941, 25098124271, 47262174531, 85990654178, 151631858378, 259857912678, 433877085278, 707369215553
Offset: 0

Views

Author

Vincenzo Librandi, Sep 23 2014

Keywords

Crossrefs

Programs

  • Magma
    m:=10; [&+[Binomial(2*m,k)*Binomial(n,k): k in [0..m]]: n in [0..40]];
    
  • Magma
    I:=[1, 21, 231, 1771, 10626, 53130, 230230, 888030, 3108105, 10015005, 30045015]; [n le 11 select I[n] else 11*Self(n-1) -55*Self(n-2) +165*Self(n-3) -330*Self(n-4) +462*Self(n-5) -462*Self(n-6) +330*Self(n-7) -165*Self(n-8) +55*Self(n-9) -11*Self(n-10) +Self(n-11): n in [1..40]];
    
  • Mathematica
    CoefficientList[Series[(1 + 10 x + 55 x^2 + 220 x^3 + 715 x^4 + 2002 x^5 + 5005 x^6 + 11440 x^7 + 24310 x^8 + 48620 x^9 + 92378 x^10)/(1 - x)^11, {x, 0, 40}], x]
    Table[Sum[Binomial[20,k]Binomial[n,k],{k,0,10}],{n,0,30}] (* or *) LinearRecurrence[{11,-55,165,-330,462,-462,330,-165,55,-11,1},{1,21,231,1771,10626,53130,230230,888030,3108105,10015005,30045015},30] (* Harvey P. Dale, May 19 2015 *)
  • Sage
    m=10; [sum((binomial(2*m,k)*binomial(n,k)) for k in (0..m)) for n in (0..40)] # Bruno Berselli, Sep 23 2014

Formula

G.f.: (1 + 10*x + 55*x^2 + 220*x^3 + 715*x^4 + 2002*x^5 + 5005*x^6 + 11440*x^7 + 24310*x^8 + 48620*x^9 + 92378*x^10) / (1-x)^11.
a(n) = 11*a(n-1) -55*a(n-2) +165*a(n-3) -330*a(n-4) +462*a(n-5) -462*a(n-6)+330*a(n-7) -165*a(n-8) +55*a(n-9) -11*a(n-10) +a(n-11).
a(n) = 1 - 5512999*n/630 + 212329883*n^2/8400 - 134689309*n^3/4536 + 3453077689*n^4/181440 - 64212077*n^5/8640 + 80300707*n^6/43200 - 1817521*n^7/6048 + 1860157*n^8/60480 - 331721*n^9/181440 + 46189*n^10/907200.
Showing 1-2 of 2 results.