cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A247643 a(n) = ( 10*n*(n+1)+(2*n+1)*(-1)^n+7 )/8.

Original entry on oeis.org

1, 3, 9, 15, 27, 37, 55, 69, 93, 111, 141, 163, 199, 225, 267, 297, 345, 379, 433, 471, 531, 573, 639, 685, 757, 807, 885, 939, 1023, 1081, 1171, 1233, 1329, 1395, 1497, 1567, 1675, 1749, 1863, 1941, 2061, 2143, 2269, 2355, 2487, 2577, 2715, 2809, 2953, 3051
Offset: 0

Views

Author

N. J. A. Sloane, Sep 23 2014

Keywords

Comments

From Paul Curtz, Jan 01 2020: (Start)
In the following pentagonal spiral of odd numbers
101
99 61 63
97 59 31 33 65
95 57 29 11 13 35 67
93 55 27 9 1 3 15 37 69
91 53 25 7 5 17 39 71
89 51 23 21 19 41 73
87 49 47 45 43 75
85 83 81 79 77
the terms of this sequence appear on the x axis. A062786 and A172043 are in the spiral as well. (End)

Crossrefs

A diagonal of triangle in A247646.

Programs

  • Maple
    f:=n->(10*n*(n+1)+(2*n+1)*(-1)^n+7)/8;
  • Mathematica
    Table[(10 n (n + 1) + (2 n + 1) (-1)^n + 7)/8, {n, 0, 60}] (* Vincenzo Librandi, Sep 26 2014 *)
  • PARI
    Vec(-(x^4+2*x^3+4*x^2+2*x+1) / ((x-1)^3*(x+1)^2) + O(x^100)) \\ Colin Barker, Sep 25 2014

Formula

a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). - Colin Barker, Sep 25 2014
G.f.: -(x^4+2*x^3+4*x^2+2*x+1) / ((x-1)^3*(x+1)^2). - Colin Barker, Sep 25 2014
From Paul Curtz, Jan 01 2020: (Start)
a(n) = 1 + 2*A085787(n).
a(n+1) = a(n-1) + A090772(n+1). (End)
E.g.f.: (1/4)*((1 + x)*(4 + 5*x)*cosh(x) + (3 + x*(11 + 5*x))*sinh(x)). - Stefano Spezia, Jan 01 2020

Extensions

More terms from Colin Barker, Sep 25 2014