A247824 Least positive integer m such that m + n divides prime(m) + prime(n).
1, 5, 5, 5, 2, 2, 38, 16, 40, 12, 13, 1, 11, 1, 11, 4, 35, 38, 35, 35, 38, 35, 35, 36, 31, 31, 33, 33, 36, 36, 25, 25, 2, 25, 4, 3, 4, 6, 6, 8, 222, 8, 95, 223, 99, 98, 95, 88, 222, 94, 93, 94, 95, 92, 226, 88, 83, 92, 225, 92
Offset: 1
Keywords
Examples
a(2) = 5 since 5 + 2 = 7 divides prime(5) + prime(2) = 11 + 3 = 14. a(10409) = 69804276 since 69804276 + 10409 = 69814685 divides prime(10409) + prime(69804276) = 109481 + 1396184219 = 1396293700 = 20*69814685. a(35980) = 180302246 since 35980 + 180302246 = 180338226 divides prime(35980) + prime(180302246) = 427727 + 3786675019 = 3787102746 = 21*180338226. a(79276) = 3141281384 since 79276 + 3141281384 = 3141360660 divides prime(79276) + prime(3141281384) = 1010431 + 75391645409 = 75392655840 = 24*3141360660.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..100000
- Zhi-Wei Sun, A new theorem on the prime-counting function, arXiv:1409.5685, 2014.
- Zhi-Wei Sun, m+n divides prime(m)+prime(n) for some n>0, a message to Number Theory List, Sept. 27, 2014.
- Zhi-Wei Sun, A new theorem on the prime-counting function, Ramanujan J. 42(2017), no.1, 59-67.
Programs
-
Haskell
import Data.List (genericIndex) a247824 n = genericIndex a247824_list (n - 1) a247824_list = f ips where f ((x, p) : xps) = head [y | (y, q) <- ips, (p + q) `mod` (x + y) == 0] : f xps ips = zip [1..] a000040_list -- Reinhard Zumkeller, Sep 27 2014
-
Mathematica
Do[m=1;Label[aa];If[Mod[Prime[m]+Prime[n],m+n]==0,Print[n," ",m];Goto[bb]];m=m+1;Goto[aa];Label[bb];Continue,{n,1,60}] lpi[n_]:=Module[{k=1,p=Prime[n]},While[!Divisible[p+Prime[k],k+n], k++]; k]; Array[lpi,60] (* Harvey P. Dale, Apr 23 2015 *)
-
PARI
a(n) = {m = 1; while ((prime(m) + prime(n)) % (m + n), m++); m;} \\ Michel Marcus, Sep 25 2014
-
PARI
a(n)=my(p=prime(n),m); forprime(q=2,, if((p+q)%(n+m++)==0, return(m))) \\ Charles R Greathouse IV, Sep 25 2014
Comments