A247918 Expansion of (1 + x) / ((1 - x^4) * (1 + x^4 - x^5)) in powers of x.
1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 2, 0, -1, 2, -1, 2, 1, -2, 4, -3, 1, 4, -5, 7, -4, -2, 10, -12, 11, -1, -11, 22, -23, 13, 11, -33, 45, -35, 3, 44, -78, 81, -37, -41, 122, -158, 119, 4, -163, 281, -276, 115, 167, -443, 558, -391, -52, 611, -1000, 949
Offset: 0
Examples
G.f. = 1 + x + x^5 + x^6 + x^8 + x^11 + 2*x^13 - x^15 + 2*x^16 - x^17 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,-1,1,-1,2,-2,2,-1).
Programs
-
Magma
R
:=PowerSeriesRing(Integers(), 70); Coefficients(R!((1 + x)/((1-x^4)*(1+x^4-x^5)))); // G. C. Greubel, Aug 04 2018 -
Mathematica
CoefficientList[Series[(1+x)/((1-x^4)(1+x^4-x^5)), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 27 2014 *)
-
PARI
{a(n) = if( n<0, n=-8-n; polcoeff( -1/((1-x)*(1-x+x^2)*(1+x^2)*(1 - x^2 - x^3)) + x * O(x^n), n), polcoeff( 1/((1-x)*(1-x+x^2)*(1+x^2)*(1+x-x^3)) + x * O(x^n), n))};
-
SageMath
def A247918_list(prec): P.
= PowerSeriesRing(ZZ, prec) return P( (1+x)/((1-x^4)*(1+x^4-x^5)) ).list() A247918_list(70) # G. C. Greubel, Aug 08 2022
Formula
G.f.: 1 / ((1 - x) * (1 - x + x^2) * (1 + x^2) * (1 + x - x^3)).
a(n) = a(n+1) + a(n+5) - mod(floor((n-1)/2), 2) for all n in Z.
a(n) = -A247907(-8-n) for all n in Z.