A247919 Expansion of 1 / (1 + x^4 - x^5) in powers of x.
1, 0, 0, 0, -1, 1, 0, 0, 1, -2, 1, 0, -1, 3, -3, 1, 1, -4, 6, -4, 0, 5, -10, 10, -4, -5, 15, -20, 14, 1, -20, 35, -34, 13, 21, -55, 69, -47, -8, 76, -124, 116, -39, -84, 200, -240, 155, 45, -284, 440, -395, 110, 329, -724, 835, -505, -219, 1053, -1559, 1340
Offset: 0
Examples
G.f. = 1 - x^4 + x^5 + x^8 - 2*x^9 + x^10 - x^12 + 3*x^13 - 3*x^14 + x^15 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,-1,1).
Programs
-
Magma
m:=60; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/(1 + x^4 - x^5))); // G. C. Greubel, Aug 04 2018 -
Mathematica
CoefficientList[Series[1/(1 + x^4 - x^5), {x, 0, 100}], x] (* Vincenzo Librandi, Sep 27 2014 *) LinearRecurrence[{0,0,0,-1,1},{1,0,0,0,-1},60] (* Harvey P. Dale, Sep 11 2024 *)
-
PARI
{a(n) = if( n<0, n=-5-n; polcoeff( 1 / (1 - x - x^5) + x * O(x^n), n), polcoeff( 1 / (1 + x^4 - x^5) + x * O(x^n), n))};