cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248076 Partial sums of the sum of the 5th powers of the divisors of n: Sum_{i=1..n} sigma_5(i).

Original entry on oeis.org

1, 34, 278, 1335, 4461, 12513, 29321, 63146, 122439, 225597, 386649, 644557, 1015851, 1570515, 2333259, 3415660, 4835518, 6792187, 9268287, 12572469, 16673621, 21988337, 28424681, 36677981, 46446732, 58699434, 73107634, 90873690, 111384840, 136555392
Offset: 1

Views

Author

Wesley Ivan Hurt, Sep 30 2014

Keywords

Crossrefs

Cf. A001160 (sigma_5).
Cf. A024916: Partial sums of sigma(n) = A000203(n).
Cf. A064602: Partial sums of sigma_2(n) = A001157(n).
Cf. A064603: Partial sums of sigma_3(n) = A001158(n).
Cf. A064604: Partial sums of sigma_4(n) = A001159(n).

Programs

  • Magma
    [(&+[DivisorSigma(5,j): j in [1..n]]): n in [1..30]]; // G. C. Greubel, Nov 07 2018
    
  • Maple
    with(numtheory): A248076:=n->add(sigma[5](i), i=1..n): seq(A248076(n), n=1..50);
  • Mathematica
    Table[Sum[DivisorSigma[5, i], {i, n}], {n, 30}]
    Accumulate[DivisorSigma[5, Range[30]]] (* Vaclav Kotesovec, Mar 30 2018 *)
  • PARI
    lista(nn) = vector(nn, n, sum(i=1, n, sigma(i, 5))) \\ Michel Marcus, Sep 30 2014
    
  • Python
    from math import isqrt
    def A248076(n): return ((s:=isqrt(n))**3*(s+1)**2*(1-2*s*(s+1)) + sum((q:=n//k)*(12*k**5+q*(q**2*(q*(2*q+6)+5)-1)) for k in range(1,s+1)))//12 # Chai Wah Wu, Oct 21 2023

Formula

a(n) = Sum_{i=1..n} sigma_5(i) = Sum_{i=1..n} A001160(i).
a(n) ~ Zeta(6) * n^6 / 6. - Vaclav Kotesovec, Sep 02 2018
a(n) ~ Pi^6 * n^6 / 5670. - Vaclav Kotesovec, Sep 02 2018
a(n) = Sum_{k=1..n} (Bernoulli(6, floor(1 + n/k)) - 1/42)/6, where Bernoulli(n,x) are the Bernoulli polynomials. - Daniel Suteu, Nov 07 2018
a(n) = Sum_{k=1..n} k^5 * floor(n/k). - Daniel Suteu, Nov 08 2018