cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248163 Chebyshev's S polynomials (A049310) evaluated at 34/3 and multiplied by powers of 3 (A000244).

Original entry on oeis.org

1, 34, 1147, 38692, 1305205, 44028742, 1485230383, 50101574344, 1690086454249, 57012025275370, 1923198081274339, 64875626535849196, 2188462519487403613, 73823845023749080078, 2490314568132082090135, 84006280711277049343888, 2833800713070230938880977, 95593167717986358477858226
Offset: 0

Views

Author

Wolfdieter Lang, Nov 07 2014

Keywords

Comments

This sequence appears in the solution for the curvature sequence of the touching circle and chord example given in A249457. See also the pair A249862(n) and a(n-1), with a(-1) = 0, for which details are given in A249862.

Crossrefs

Programs

  • Magma
    I:=[1, 34]; [n le 2 select I[n] else 34*Self(n-1) - 9*Self(n-2): n in [1..20]]; // Vincenzo Librandi, Nov 08 2014
    
  • Mathematica
    CoefficientList[Series[1/(1-34 x +(3 x)^2), {x,0,40}], x] (* Vincenzo Librandi, Nov 08 2014 *)
    Table[3^n*ChebyshevU[n,17/3], {n,0,40}] (* G. C. Greubel, May 31 2025 *)
  • PARI
    a(n) = 3^n*polchebyshev(n, 2, 17/3); \\ Michel Marcus, May 31 2025
  • SageMath
    def A248163(n): return 3^n*chebyshev_U(n,17/3)
    print([A248163(n) for n in range(41)]) # G. C. Greubel, May 31 2025
    

Formula

a(n) = 3^n*S(n, 34/3) with Chebyshev's S polynomial (for S see the coefficient triangle A049310).
O.g.f.: 1/(1 - 34*x + 9*x^2).
a(n) = 34*a(n-1) - 9*a(n-2), a(-1) = 0, a(0) = 1 .
E.g.f.: exp(17*x)*(140*cosh(2*sqrt(70)*x) + 17*sqrt(70)*sinh(2*sqrt(70)*x))/140. - Stefano Spezia, Mar 24 2023

Extensions

a(16)-a(17) from Stefano Spezia, Mar 24 2023