A248201 Numbers n such that n-1, n and n+1 are all squarefree semiprimes.
34, 86, 94, 142, 202, 214, 218, 302, 394, 446, 634, 698, 922, 1042, 1138, 1262, 1346, 1402, 1642, 1762, 1838, 1894, 1942, 1982, 2102, 2182, 2218, 2306, 2362, 2434, 2462, 2518, 2642, 2722, 2734, 3098, 3386, 3602, 3694, 3866, 3902, 3958, 4286, 4414
Offset: 1
Keywords
Examples
33, 34 and 35 factor as 3*11, 2*17 and 5*7, respectively. No smaller such trio exists, so a(1)=34.
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
- Wikipedia, Semiprime
Crossrefs
Programs
-
Mathematica
lst={}; Do[z=n^3 + 3 n^2 + 2 n; If[PrimeOmega[z/n]==PrimeOmega[z/(n + 2)]==4 && PrimeNu[z]==6, AppendTo[lst, n + 1]], {n, 1, 6000, 2}]; lst (* Vincenzo Librandi, Jul 24 2015 *) SequencePosition[Table[If[SquareFreeQ[n]&&PrimeOmega[n]==2,1,0],{n,4500}],{1,1,1}][[All,1]]+1 (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Apr 11 2018 *)
-
PARI
sq(n)=bigomega(n)==2 && omega(n)==2; for(n=3,10^4,if(sq(n-1)&&sq(n)&&sq(n+1),print1(n,", "))); \\ Joerg Arndt, Oct 18 2014
Formula
a(n) = A039833(n) + 1. - Michel Marcus, Oct 25 2014
a(n) = 2 * A195685(n). - Torlach Rush, Jun 25 2021
Comments