A274663
Sum of n-th powers of the roots of x^3 + 4*x^2 - 11*x - 1.
Original entry on oeis.org
3, -4, 38, -193, 1186, -6829, 40169, -234609, 1373466, -8034394, 47011093, -275049240, 1609284589, -9415668903, 55089756851, -322322100748, 1885860059450, -11033893589177, 64557712909910, -377717821061137, 2209972232664381, -12930227249420121
Offset: 0
-
RecurrenceTable[{a[0] == 3, a[1] == -4, a[2] == 38, a[n] == -4 a[n - 1] + 11 a[n - 2] + a[n - 3]}, a, {n, 0, 20}] (* Michael De Vlieger, Jul 02 2016 *)
LinearRecurrence[{-4,11,1},{3,-4,38},30] (* Harvey P. Dale, Dec 28 2022 *)
-
polsym(x^3 + 4*x^2 - 11*x - 1, 21)
-
Vec((3+8*x-11*x^2)/(1+4*x-11*x^2-x^3) + O(x^99)) \\ Altug Alkan, Jul 08 2016
A274592
Sum of n-th powers of the roots of x^3 -31* x^2 - 25*x - 1.
Original entry on oeis.org
3, 31, 1011, 32119, 1020995, 32454831, 1031656755, 32793751175, 1042430160131, 33136210400191, 1053316070160371, 33482245865136407, 1064315659783638083, 33831894915991351119, 1075430116136187973171, 34185195288781394584359, 1086660638750543922795523
Offset: 0
-
LinearRecurrence[{31,25,1},{3,31,1011},20] (* Harvey P. Dale, Feb 02 2022 *)
-
Vec((3-62*x-25*x^2)/(1-31*x-25*x^2-x^3) + O(x^20)) \\ Colin Barker, Jun 30 2016
-
polsym(x^3 -31* x^2 - 25*x - 1, 30) \\ Charles R Greathouse IV, Jul 20 2016
A320918
Sum of n-th powers of the roots of x^3 + 9*x^2 + 20*x - 1.
Original entry on oeis.org
3, -9, 41, -186, 845, -3844, 17510, -79865, 364741, -1667859, 7636046, -35002493, 160633658, -738017016, 3394477491, -15629323441, 72036344133, -332346150886, 1534759151873, -7093873005004, 32817327856690, -151943731458257, 704053152985509, -3264786419847751
Offset: 0
-
a := proc(n) option remember; if n < 3 then [3, -9, 41][n+1] else
-9*a(n-1) - 20*a(n-2) + a(n-3) fi end: seq(a(n), n=0..32); # Peter Luschny, Oct 25 2018
-
CoefficientList[Series[(3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3) , {x, 0, 50}], x] (* Amiram Eldar, Dec 09 2018 *)
LinearRecurrence[{-9,-20,1},{3,-9,41},30] (* Harvey P. Dale, Dec 10 2023 *)
-
polsym(x^3 + 9*x^2 + 20*x - 1, 25) \\ Joerg Arndt, Oct 24 2018
-
Vec((3 + 18*x + 20*x^2) / (1 + 9*x + 20*x^2 - x^3) + O(x^30)) \\ Colin Barker, Dec 09 2018
A322460
Sum of n-th powers of the roots of x^3 + 95*x^2 - 88*x - 1.
Original entry on oeis.org
3, -95, 9201, -882452, 84642533, -8118687210, 778722945402, -74693039645137, 7164358266796181, -687186244111463849, 65913082025027484446, -6322208017501153044901, 606409425694567846432994, -58165183833442021851601272, 5579050171430096545235179411
Offset: 0
Similar sequences with (h,k) values:
A215076 (0,1),
A274220 (1,0),
A274663 (1,1),
A248417 (1,2),
A215560 (2,1).
-
seq(coeff(series((3+190*x-88*x^2)/(1+95*x-88*x^2-x^3),x,n+1), x, n), n = 0 .. 20); # Muniru A Asiru, Dec 11 2018
-
LinearRecurrence[{-95, 88, 1}, {3, -95, 9201}, 50] (* Amiram Eldar, Dec 09 2018 *)
-
Vec((3 + 190*x - 88*x^2) / (1 + 95*x - 88*x^2 - x^3) + O(x^15)) \\ Colin Barker, Dec 09 2018
-
polsym(x^3 + 95*x^2 - 88*x - 1, 25) \\ Joerg Arndt, Dec 17 2018
Showing 1-4 of 4 results.
Comments