cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248479 a(1) = 1, a(2) = 3, and from then on alternatively subtract and multiply two previous terms.

Original entry on oeis.org

1, 3, 2, 6, 4, 24, 20, 480, 460, 220800, 220340, 48651072000, 48650851660, 2366916086971979520000, 2366916086923328668340, 5602291762651594835806920193095352396800000, 5602291762651594835804553277008429068131660, 31385672993873913406017018916292673201543291913142263413575757282059524278962688000000
Offset: 1

Views

Author

Stuart E Anderson, Oct 07 2014

Keywords

Crossrefs

Programs

  • Haskell
    a248479 n = a248479_list !! (n-1)
    a248479_list = 1 : 3 : zipWith ($) (map uncurry $ cycle [(-), (*)])
                                       (zip (tail a248479_list) a248479_list)
    -- Reinhard Zumkeller, Oct 28 2014
  • Maple
    a:= proc(n) option remember;
    piecewise(n::odd, a(n-1)-a(n-2), a(n-1)*a(n-2))
    end proc:
    a(1):= 1: a(2):= 3:
    seq(a(n),n=1..20); # Robert Israel, Oct 27 2014
  • Mathematica
    nxt[{n_,a_,b_}]:={n+1,b,If[EvenQ[n],b-a,b*a]}; NestList[nxt,{2,1,3},20][[All,2]] (* Harvey P. Dale, Jul 31 2018 *)
  • PARI
    v=[1,3];for(n=1,20,if(n%2,v=concat(v,v[#v]-v[#v-1]));if(!(n%2),v=concat(v,v[#v]*v[#v-1])));v \\ Derek Orr, Oct 26 2014
    
  • Scheme
    (definec (A248479 n) (cond ((= 1 n) 1) ((= 2 n) 3) ((odd? n) (- (A248479 (- n 1)) (A248479 (- n 2)))) (else (* (A248479 (- n 1)) (A248479 (- n 2))))))
    ;; A memoizing definec-macro can be found from http://oeis.org/wiki/Memoization - Antti Karttunen, Oct 26 2014
    

Formula

a(1) = 1, a(2) = 3, after which, when n is odd, a(n) = a(n-1) - a(n-2), and when n is even, a(n) = a(n-1) * a(n-2). - Antti Karttunen, Oct 26 2014, after the comment of original author.
a(n) = (a(n-1)*a(n-2) + a(n-1) - a(n-2) + (-1)^n * (a(n-1)*a(n-2) - a(n-1) + a(n-2)))/2. - Robert Israel, Oct 27 2014

Extensions

One term corrected and additional terms added by Colin Barker, Oct 07 2014
Term a(18) added by Antti Karttunen, Oct 26 2014