cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248527 Numbers n such that the smallest prime divisor of n^2+1 is 13.

Original entry on oeis.org

34, 44, 60, 70, 86, 96, 164, 174, 190, 200, 216, 226, 294, 304, 320, 330, 346, 356, 424, 434, 450, 460, 476, 486, 554, 564, 580, 590, 606, 616, 684, 694, 710, 720, 736, 746, 814, 824, 840, 850, 866, 876, 944, 954, 970, 980, 996, 1006, 1074, 1084, 1100, 1110
Offset: 1

Views

Author

Michel Lagneau, Oct 08 2014

Keywords

Comments

Or numbers n such that the smallest prime divisor of A002522(n) is A002313(3).
a(n) == 8 (mod 26) if n is odd and a(n) == 18 (mod 26) if n is even.
It is interesting to observe that a(n) is given by a linear formula (see the formula below).

Examples

			34 is in the sequence because 34^2+1= 13*89.
		

Crossrefs

Programs

  • Magma
    [n: n in [2..3000] | PrimeDivisors(n^2+1)[1] eq 13]; // Bruno Berselli, Oct 08 2014
  • Maple
    * first program *
    with(numtheory):p:=13:
       for n from 1 to 1000 do:
        if factorset(n^2+1)[1] = p then printf(`%d, `, n):
        else
        fi:
       od:
    * second program using the formula*
    for n from 0 to 100 by 5 do:
       for k from 1 to 3 do:
         x:=8+(k+n)*26:y:=18+(k+n)*26:
         printf(`%d, `,x):printf(`%d, `,y):
       od:
      od:
  • Mathematica
    lst={};Do[If[FactorInteger[n^2+1][[1,1]]==13,AppendTo[lst,n]],{n,2,2000}];lst
    p = 13; ps = Select[Range[p - 1], Mod[#, 4] != 3 && PrimeQ[#] &]; Select[Range[1200], Divisible[(nn = #^2 + 1), p] && ! Or @@ Divisible[nn, ps] &] (* Amiram Eldar, Aug 16 2019 *)
  • PARI
    isok(n) = factor(n^2+1)[1,1] == 13; \\ Michel Marcus, Oct 08 2014
    

Formula

{a(n)} = {8+(k + m)*26} union {18+(k + m)*26} for m = 0, 5, 10,...,5p,... and k = 1, 2, 3 (values in increasing order).