A248572 a(n) = 29*n + 1.
1, 30, 59, 88, 117, 146, 175, 204, 233, 262, 291, 320, 349, 378, 407, 436, 465, 494, 523, 552, 581, 610, 639, 668, 697, 726, 755, 784, 813, 842, 871, 900, 929, 958, 987, 1016, 1045, 1074, 1103, 1132, 1161, 1190, 1219, 1248, 1277, 1306, 1335, 1364, 1393, 1422
Offset: 0
Examples
For n = 5, 29n + 1 = 145 + 1 = 146.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 0..10000
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Crossrefs
Programs
-
GAP
List([0..60], n-> 29*n+1); # G. C. Greubel, May 24 2019
-
Magma
[29*n+1: n in [0..60]]; // Vincenzo Librandi, Oct 26 2014
-
Mathematica
29Range[0, 60] + 1 (* Alonso del Arte, Oct 09 2014 *) CoefficientList[Series[(1+28x)/(1-x)^2, {x, 0, 60}], x] (* Vincenzo Librandi, Oct 26 2014 *) LinearRecurrence[{2,-1},{1,30},50] (* Harvey P. Dale, Oct 08 2019 *)
-
PARI
vector(60, n, n--; 29*n+1) \\ Derek Orr, Oct 08 2014
-
Python
for n in range(61): print(29*n+1, end=', ')
-
Sage
[29*n+1 for n in (0..60)] # G. C. Greubel, May 24 2019
Formula
a(n) = 29*n + 1.
G.f.: (1+28*x)/(1-x)^2. - Vincenzo Librandi, Oct 26 2014 [corrected by Georg Fischer, May 24 2019]
E.g.f.: (1 + 29*x)*exp(x). - G. C. Greubel, May 24 2019
Comments