cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A248913 A248614(n+1) - A248614(n).

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 4, 2, 2, 2, 6, 2, 6, 4, 2, 2, 2, 2, 4, 6, 2, 6, 4, 2, 6, 2, 2, 2, 4, 2, 2, 4, 4, 2, 4, 2, 2, 2, 4, 4, 6, 4, 2, 4, 2, 2, 4, 4, 2, 6, 6, 2, 2, 6, 2, 2, 2, 2, 10, 2, 4, 2, 2, 4, 4, 2, 2, 4, 4, 2, 4, 2, 2, 2, 2, 4, 2, 6, 4, 2, 4, 4, 2, 2, 4, 2
Offset: 0

Views

Author

Paul Curtz, Oct 16 2014

Keywords

Comments

From Bernoulli numbers A027642.
The first different numbers of a(n), i.e., 1, 2, 4, 6, 10, ... = A248614(1, 2, 3, 4, 5, ...) are at rank 0, 2, 4, 10, 58, ... .

Crossrefs

Programs

  • PARI
    lista() = {vbden = readvec("c:/gp/bfiles/b027642.txt"); vredu = readvec("c:/gp/bfiles/b090126.txt"); vrank = []; for (i=1, #vredu, val = vredu[i]; k = 1; while(vbden[k] != val, k++); vrank = concat(vrank, k-1);); for (i=2, #vrank, print1(vrank[i] - vrank[i-1], ", "););} \\ Michel Marcus, Nov 08 2014

Extensions

More terms from Michel Marcus, Nov 08 2014

A346468 a(n) = (n-1) / A346467(n).

Original entry on oeis.org

0, 1, 1, 3, 1, 5, 1, 7, 2, 9, 1, 11, 1, 13, 7, 15, 1, 17, 1, 19, 1, 21, 1, 23, 2, 25, 13, 27, 1, 29, 1, 31, 2, 33, 17, 35, 1, 37, 19, 39, 1, 41, 1, 43, 1, 45, 1, 47, 1, 49, 5, 51, 1, 53, 3, 55, 2, 57, 1, 59, 1, 61, 31, 63, 4, 65, 1, 67, 17, 69, 1, 71, 1, 73, 37, 75, 19, 77, 1, 79, 1, 81, 1, 83, 1, 85, 43, 87, 1, 89
Offset: 1

Views

Author

Antti Karttunen and Thomas Ordowski, Jul 22 2021

Keywords

Comments

Numbers n such that a(n) = 1 are A248614(m)+1 for m > 0. These are all primes together with A317210. The set of these numbers has zero asymptotic density.

Crossrefs

Programs

  • Mathematica
    {0}~Join~Array[#/CarmichaelLambda@ Denominator@ BernoulliB@ # &, 89] (* Michael De Vlieger, Nov 23 2021 *)
  • PARI
    A346468(n) = if(1==n,0,my(m=1); fordiv(n-1,d,if(isprime(1+d),m = lcm(m,d))); ((n-1)/m));

Formula

a(n) = (n-1) / A346467(n).
a(n) = (n-1) / A002322(A027642(n-1)).

A249306 Denominators A027642(n) of Bernoulli numbers except for a(4*k+5)=2 instead of 1.

Original entry on oeis.org

1, 2, 6, 1, 30, 2, 42, 1, 30, 2, 66, 1, 2730, 2, 6, 1, 510, 2, 798, 1, 330, 2, 138, 1, 2730, 2, 6, 1, 870, 2, 14322, 1, 510, 2, 6, 1, 1919190, 2, 6, 1, 13530, 2, 1806, 1, 690, 2, 282, 1, 46410, 2, 66, 1, 1590, 2, 798, 1, 870, 2, 354, 1
Offset: 0

Views

Author

Paul Curtz, Oct 28 2014

Keywords

Comments

There exist an infinity of 1's, 2's, 6's, 30's, 42's, 66's, ... .
Respective ranks:
0, 3, 7, 11, 15, 19, ...
1, 5, 9, 13, 17, 21, ... (= A016813)
2, 14, 26, 34, 38, 62, ... (= A051222)
4, 8, 68, 76, 124, 152, ... (= A051226)
6, 114, 186, 258, 354, 402, ... (= A051228)
10, 50, 170, 370, 470, 590, ... (= A051230)
12, 24, 1308, 1884, 2004, 2364, ... (= A249134)
etc.
Hence by antidiagonals a permutation of A001477(n).
First column: A248614(n).
a(n) is an alternative sequence for the denominators of the Bernoulli numbers.
First 36 terms of the corresponding clockwise spiral:
.
330------2----138------1---2730------2
| |
| |
1 42------1-----30------2 6
| | | |
| | | |
798 2 1------2 66 1
| | | | |
| | | | |
2 30------1------6 1 870
| | |
| | |
510------1------6------2---2730 2
|
|
1------6------2----510------1--14322

Crossrefs

A variant of the Clausen numbers A141056, A160014. And of A176591.

Programs

  • Maple
    Clausen := proc(n) local S, i;
    S := numtheory[divisors](n); S := map(i->i+1, S);
    S := select(isprime, S); mul(i, i=S) end:
    A249306 := n -> `if`(n mod 4 = 3, 1, Clausen(n)):
    seq(A249306(n), n=0..59); # Peter Luschny, Nov 10 2014
  • Mathematica
    a[n_] := Denominator[BernoulliB[n]]; a[n_ /; Mod[n, 4] == 1] = 2; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Oct 28 2014 *)

Formula

a(2n) = A002445(n), a(2n+1) = A000034(n+1).
Showing 1-3 of 3 results.