cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A248728 Number of partitions of 3^n.

Original entry on oeis.org

1, 3, 30, 3010, 18004327, 133978259344888, 233202632378520643600875145, 817400077628568283525440629036885986580578161120, 37560309092871894517794668078727801667246369744545646936224413217138060330481863103169
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Crossrefs

Programs

  • Magma
    [NumberOfPartitions(3^n): n in [0..8]]; // Vincenzo Librandi, Oct 13 2014
    
  • Mathematica
    Table[ PartitionsP[ 3^n], {n, 0, 8}]
  • PARI
    a(n) = numbpart(3^n) \\ Michel Marcus, Oct 18 2014

Formula

a(n) = A000041(3^n). - Michel Marcus, Oct 18 2014
a(n) ~ exp(Pi*sqrt(2*3^(n-1)))/(4*3^(n+1/2)). - Ilya Gutkovskiy, Jan 13 2017

Extensions

Added a(0)=1 from Vincenzo Librandi, Oct 13 2014

A248730 Number of partitions of 5^n.

Original entry on oeis.org

1, 7, 1958, 3163127352, 1606903190858354689128371, 8630901377559029573671524821295260243701883575513498104067
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Comments

Next term is too big to be included.

Crossrefs

Programs

  • Magma
    [NumberOfPartitions(5^n): n in [0..6]]; // Vincenzo Librandi, Oct 13 2014
  • Mathematica
    Table[ PartitionsP[ 5^n], {n, 0, 6}]
  • PARI
    vector(8, n, n--; numbpart(5^n)) \\ Michel Marcus, Oct 13 2014
    

A248733 Number of digits in the decimal expansion of the number of partitions of 6^n.

Original entry on oeis.org

1, 2, 5, 14, 37, 94, 236, 584, 1437, 3529, 8654, 21210, 51966, 127302, 311840, 763864, 1871094, 4583243
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Crossrefs

Programs

  • Magma
    [Floor(Log(10,(NumberOfPartitions(6^n))))+1: n in [0..7]]; // Vincenzo Librandi, Oct 13 2014
    
  • Mathematica
    f[n_] := Floor[ Log[10, PartitionsP[ 6^n]] + 1]; Table[ f@n, {n, 0, 17}]
  • PARI
    a(n) = #Str(numbpart(6^n)); \\ Michel Marcus, Oct 16 2014
    
  • Python
    from sympy import npartitions
    from gmpy2 import digits
    def A248733(n): return len(digits(npartitions(6**n))) # Chai Wah Wu, Jul 15 2024

Formula

A248733 = A055642 o A000041 o A000400. \\ M. F. Hasler, Oct 16 2014

A248734 Number of partitions of 7^n.

Original entry on oeis.org

1, 15, 173525, 175943559810422753, 229866006383458830949778967121025947053151071434926
Offset: 0

Views

Author

Robert G. Wilson v, Oct 12 2014

Keywords

Comments

Next term is too big to be included.

Crossrefs

Programs

  • Magma
    [NumberOfPartitions(7^n): n in [0..6]]; // Vincenzo Librandi, Oct 13 2014
    
  • Mathematica
    Table[ PartitionsP[ 7^n], {n, 0, 5}]
  • PARI
    a(n) = numbpart(7^n) \\ Michel Marcus, Oct 18 2014

Formula

a(n) = A000041(7^n). - Michel Marcus, Oct 18 2014

A347615 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is the number of partitions of n^k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 5, 3, 1, 1, 1, 22, 30, 5, 1, 1, 1, 231, 3010, 231, 7, 1, 1, 1, 8349, 18004327, 1741630, 1958, 11, 1, 1, 1, 1741630, 133978259344888, 365749566870782, 3163127352, 17977, 15, 1, 1, 1, 4351078600, 233202632378520643600875145, 61847822068260244309086870983975, 1606903190858354689128371, 15285151248481, 173525, 22, 1
Offset: 0

Views

Author

Seiichi Manyama, Sep 08 2021

Keywords

Examples

			Square array begins:
  1, 1,   1,       1,               1, ...
  1, 1,   1,       1,               1, ...
  1, 2,   5,      22,             231, ...
  1, 3,  30,    3010,        18004327, ...
  1, 5, 231, 1741630, 365749566870782, ...
		

Crossrefs

Columns k=0..3 give A000012, A000041, A072213, A128854.
Rows n=0+1, 2-10 give A000012, A068413, A248728, A068413(2*n), A248730, A248732, A248734, A068413(3*n), A248728(2*n), A070177.
Main diagonal gives A347607.

Programs

  • PARI
    T(n, k) = numbpart(n^k);

Formula

T(n,k) = A000041(n^k).
Showing 1-5 of 5 results.