cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248825 a(n) = n^2 + 1 - (-1)^n.

Original entry on oeis.org

0, 3, 4, 11, 16, 27, 36, 51, 64, 83, 100, 123, 144, 171, 196, 227, 256, 291, 324, 363, 400, 443, 484, 531, 576, 627, 676, 731, 784, 843, 900, 963, 1024, 1091, 1156, 1227, 1296, 1371, 1444, 1523, 1600, 1683, 1764, 1851, 1936, 2027, 2116
Offset: 0

Views

Author

Paul Curtz, Oct 15 2014

Keywords

Comments

Also, A016742 and A164897 interleaved.
See the spiral in Example field of A054552: after 0, the sequence is given by the terms of the semidiagonals 4, 16, 36, 64, 100, ... and 3, 11, 27, 51, 83, ... sorted into ascending order.
Primes of the sequence are in A056899.

Crossrefs

Programs

  • Magma
    [n^2+1-(-1)^n: n in [0..60]]; // Vincenzo Librandi, Oct 16 2014
    
  • Mathematica
    Table[n^2 + 1 - (-1)^n, {n, 0, 60}] (* Vincenzo Librandi, Oct 16 2014 *)
    LinearRecurrence[{2,0,-2,1},{0,3,4,11},60] (* Harvey P. Dale, Jun 30 2019 *)
  • PARI
    vector(100,n,(n-1)^2+1+(-1)^n) \\ Derek Orr, Oct 15 2014
    
  • Sage
    [n^2+1-(-1)^n for n in (0..60)] # Bruno Berselli, Oct 16 2014

Formula

a(n) = a(-n) = 2*a(n-1) - 2*(n-3) + a(n-4).
a(n) = n^2 + A010673(n) = (n+1)^2 - A168277(n+1).
a(n+1) = A248800(n) + A042963(n+1) = a(n) + A166519(n).
a(n+2) = a(n) + 4*n.
a(n+5) = a(n-5) + A008602(n).
G.f.: x*(3 - 2*x + 3*x^2)/((1 + x)*(1 - x)^3). - Bruno Berselli, Oct 15 2014
Sum_{n>=1} 1/a(n) = Pi^2/24 + tanh(Pi/sqrt(2))*Pi/(4*sqrt(2)). - Amiram Eldar, Aug 21 2022

Extensions

Edited by Bruno Berselli, Oct 16 2014