A248825 a(n) = n^2 + 1 - (-1)^n.
0, 3, 4, 11, 16, 27, 36, 51, 64, 83, 100, 123, 144, 171, 196, 227, 256, 291, 324, 363, 400, 443, 484, 531, 576, 627, 676, 731, 784, 843, 900, 963, 1024, 1091, 1156, 1227, 1296, 1371, 1444, 1523, 1600, 1683, 1764, 1851, 1936, 2027, 2116
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Crossrefs
Programs
-
Magma
[n^2+1-(-1)^n: n in [0..60]]; // Vincenzo Librandi, Oct 16 2014
-
Mathematica
Table[n^2 + 1 - (-1)^n, {n, 0, 60}] (* Vincenzo Librandi, Oct 16 2014 *) LinearRecurrence[{2,0,-2,1},{0,3,4,11},60] (* Harvey P. Dale, Jun 30 2019 *)
-
PARI
vector(100,n,(n-1)^2+1+(-1)^n) \\ Derek Orr, Oct 15 2014
-
Sage
[n^2+1-(-1)^n for n in (0..60)] # Bruno Berselli, Oct 16 2014
Formula
a(n) = a(-n) = 2*a(n-1) - 2*(n-3) + a(n-4).
a(n+2) = a(n) + 4*n.
a(n+5) = a(n-5) + A008602(n).
G.f.: x*(3 - 2*x + 3*x^2)/((1 + x)*(1 - x)^3). - Bruno Berselli, Oct 15 2014
Sum_{n>=1} 1/a(n) = Pi^2/24 + tanh(Pi/sqrt(2))*Pi/(4*sqrt(2)). - Amiram Eldar, Aug 21 2022
Extensions
Edited by Bruno Berselli, Oct 16 2014
Comments