A248851 a(n) = ( 2*n*(2*n^2 + 9*n + 14) + (-1)^n - 1 )/16.
0, 3, 10, 22, 41, 68, 105, 153, 214, 289, 380, 488, 615, 762, 931, 1123, 1340, 1583, 1854, 2154, 2485, 2848, 3245, 3677, 4146, 4653, 5200, 5788, 6419, 7094, 7815, 8583, 9400, 10267, 11186, 12158, 13185, 14268, 15409, 16609, 17870, 19193, 20580, 22032
Offset: 0
Examples
From third comment: a(0)=0, a(1)=1+2, a(2)=4+6, a(3)=10+12, a(4)=20+21, a(5)=35+33.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Luce ETIENNE, Illustration for a(1), a(2), a(3), a(4), a(5)
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
Programs
-
Magma
[(4*n^3+18*n^2+28*n-(1-(-1)^n)) div 16: n in [0..50]]; // Vincenzo Librandi, Mar 21 2015
-
Mathematica
CoefficientList[Series[x (x^3 - 2 x^2 + x + 3) / ((x - 1)^4(x + 1)), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 21 2015 *) LinearRecurrence[{3,-2,-2,3,-1},{0,3,10,22,41},50] (* Harvey P. Dale, Jan 17 2023 *)
-
PARI
concat(0, Vec(x*(x^3-2*x^2+x+3)/((x-1)^4*(x+1)) + O(x^100))) \\ Colin Barker, Mar 03 2015
Formula
G.f.: x*(x^3-2*x^2+x+3) / ((x-1)^4*(x+1)). - Colin Barker, Mar 03 2015
a(n) = 3*a(n-1)-2*a(n-2)-2*a(n-3)+3*a(n-4)-a(n-5). - Colin Barker, Mar 03 2015
Extensions
Typo in formula fixed by Vincenzo Librandi, Mar 21 2015
Name rewritten using the closed form by Bruno Berselli, Apr 19 2015
Comments