cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249452 Numbers k such that A249441(k) = 3.

Original entry on oeis.org

15, 31, 47, 63, 95, 127, 191, 255, 383, 511, 767, 1023, 1535, 2047, 3071, 4095, 6143, 8191, 12287, 16383, 24575, 32767, 49151, 65535, 98303, 131071, 196607, 262143, 393215, 524287, 786431, 1048575, 1572863, 2097151, 3145727, 4194303, 6291455, 8388607, 12582911
Offset: 1

Views

Author

Vladimir Shevelev, Oct 29 2014

Keywords

Comments

Or k for which none of entries in the k-th row of Pascal's triangle (A007318) is divisible by 4 (cf. comment in A249441).
Using the Kummer carries theorem, one can prove that, for n>=2, a(n) has the form of either 1...1 or 101...1 in base 2.
The sequence is a subset of so-called binomial coefficient predictors (BCP) in base 2 (see Shevelev link, Th. 6 and Cor. 8), which were found also using Kummer theorem and have a very close binary structure.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(15 + 16 x - 14 x^2 - 16 x^3)/(1 - x -2 x^2 + 2 x^3), {x, 0, 70}], x] (* Vincenzo Librandi, Oct 30 2014 *)
    LinearRecurrence[{1,2,-2},{15,31,47,63},40] (* Harvey P. Dale, Apr 01 2019 *)
  • PARI
    a(n)=if(n==1, 15, (n%2+2)<<(n\2+3)-1) \\ Charles R Greathouse IV, Nov 06 2014
    
  • PARI
    is(n)=(n+1)>>valuation(n+1, 2)<5 && !setsearch([1, 2, 3, 5, 7, 11, 23], n) \\ Charles R Greathouse IV, Nov 06 2014

Formula

a(n) has either form 2^k - 1 or 3*2^m-1, k, m >= 4 (cf. A000225, A055010). Since, for k>=5, 2^k-1<3*2^(k-1)-1<2^(k+1)-1, we have that, for n>=1, a(2*n) = 2^(n+4)-1; a(2*n+1) = 3*2^(n+3)-1. - Vladimir Shevelev, Oct 29 2014, Nov 06 2014
a(1) = 15, and for n>1, a(n) = A052955(n+6). [Follows from above] - Antti Karttunen, Nov 03 2014
G.f.: (15+16*x-14*x^2-16*x^3)/(1-x-2*x^2+2*x^3); a(n) = 16*A029744(n)-1. - Peter J. C. Moses, Oct 30 2014

Extensions

More terms from Peter J. C. Moses, Oct 29 2014