A249547 a(n) = (10*n^2+8*n-1+(-1)^n)/8.
0, 2, 7, 14, 24, 36, 51, 68, 88, 110, 135, 162, 192, 224, 259, 296, 336, 378, 423, 470, 520, 572, 627, 684, 744, 806, 871, 938, 1008, 1080, 1155, 1232, 1312, 1394, 1479, 1566, 1656, 1748, 1843, 1940, 2040, 2142, 2247, 2354, 2464, 2576, 2691, 2808, 2928, 3050
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Magma
[(10*n^2+8*n-1+(-1)^n)/8 : n in [0..50]];
-
Maple
A249547:=n->(10*n^2+8*n-1+(-1)^n)/8: seq(A249547(n), n=0..100);
-
Mathematica
Table[(10*n^2 + 8 n - 1 + (-1)^n)/8 , {n, 0, 50}]
-
PARI
a(n) = (10*n^2+8*n-1+(-1)^n)/8; \\ Michel Marcus, Nov 04 2014
-
PARI
concat(0, Vec(x*(2+3*x)/((1-x)^3*(1+x)) + O(x^100))) \\ Altug Alkan, Oct 28 2015
Formula
G.f.: x*(2+3*x)/((1-x)^3*(1+x)).
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>3.
a(n) = Sum_{i=0..n} A001068(2*i). - Wesley Ivan Hurt, May 06 2016
E.g.f.: (x*(9 + 5*x)*exp(x) - sinh(x))/4. - Ilya Gutkovskiy, May 06 2016
Comments