cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249547 a(n) = (10*n^2+8*n-1+(-1)^n)/8.

Original entry on oeis.org

0, 2, 7, 14, 24, 36, 51, 68, 88, 110, 135, 162, 192, 224, 259, 296, 336, 378, 423, 470, 520, 572, 627, 684, 744, 806, 871, 938, 1008, 1080, 1155, 1232, 1312, 1394, 1479, 1566, 1656, 1748, 1843, 1940, 2040, 2142, 2247, 2354, 2464, 2576, 2691, 2808, 2928, 3050
Offset: 0

Views

Author

Wesley Ivan Hurt, Oct 31 2014

Keywords

Comments

a(n) is the number of lattice points (x,y) in the coordinate plane bounded by y < 3x, y >= x/2 and x <= n.
a(n)+1 is the number of lattice points bounded by y <= 3x, y >= x/2 and x <= n.

Crossrefs

Programs

  • Magma
    [(10*n^2+8*n-1+(-1)^n)/8 : n in [0..50]];
    
  • Maple
    A249547:=n->(10*n^2+8*n-1+(-1)^n)/8: seq(A249547(n), n=0..100);
  • Mathematica
    Table[(10*n^2 + 8 n - 1 + (-1)^n)/8 , {n, 0, 50}]
  • PARI
    a(n) = (10*n^2+8*n-1+(-1)^n)/8; \\ Michel Marcus, Nov 04 2014
    
  • PARI
    concat(0, Vec(x*(2+3*x)/((1-x)^3*(1+x)) + O(x^100))) \\ Altug Alkan, Oct 28 2015

Formula

G.f.: x*(2+3*x)/((1-x)^3*(1+x)).
a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>3.
a(n) = A004526(n) + A226292(n), for n>0.
a(n) = Sum_{i=0..n} A001068(2*i). - Wesley Ivan Hurt, May 06 2016
E.g.f.: (x*(9 + 5*x)*exp(x) - sinh(x))/4. - Ilya Gutkovskiy, May 06 2016
a(2n) = A168668(n). a(2n-1) = A135706(n). - Wesley Ivan Hurt, May 09 2016