cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A249665 The number of permutations p of {1,...,n} such that p(1)=1, p(n)=n, and |p(i)-p(i+1)| is in {1,2,3} for all i from 1 to n-1.

Original entry on oeis.org

1, 1, 1, 2, 6, 14, 28, 56, 118, 254, 541, 1140, 2401, 5074, 10738, 22711, 48001, 101447, 214446, 453355, 958395, 2025963, 4282685, 9053286, 19138115, 40456779, 85522862, 180789396, 382176531, 807895636, 1707837203, 3610252689, 7631830480
Offset: 1

Views

Author

Andrew Woods, Mar 06 2015

Keywords

Comments

These partitions are qualified as 3-bounded and anchored. The number of 2-bounded anchored partitions of [1..n] is A000930(n). - Michel Marcus, Aug 13 2018

Examples

			For n = 5, the a(5) = 6 solutions are 123456, 132456, 134256, 135246, 142356, and 143256.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 41);
    Coefficients(R!( x*(1-x-x^3)/(1-2*x+x^2-2*x^3-x^4-x^5+x^7+x^8) )); // G. C. Greubel, Sep 23 2024
    
  • Mathematica
    (1-x-x^3)/(1 -2x +x^2 -2x^3 -x^4-x^5+x^7+x^8) + O[x]^33 // CoefficientList[#, x]& (* Jean-François Alcover, Sep 23 2018, after Colin Barker *)
  • PARI
    Vec(x*(1 - x - x^3) / (1 - 2*x + x^2 - 2*x^3 - x^4 - x^5 + x^7 + x^8) + O(x^40)) \\ Colin Barker, Aug 13 2018
    
  • SageMath
    def A249665_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x*(1-x-x^3)/(1-2*x+x^2-2*x^3-x^4-x^5+x^7+x^8) ).list()
    a=A249665_list(41); a[1:] # G. C. Greubel, Sep 23 2024

Formula

Let a(1)=1, g(1)=h(1)=0. For all n<1, let a(n)=g(n)=h(n)=0. Then:
a(n) = a(n-1) + g(n-1) + h(n-1),
g(n) = a(n-2) + a(n-3) + a(n-4) - a(n-6) + g(n-2) + g(n-4) + h(n-2),
h(n) = 2*a(n-3) + 2*a(n-4) + a(n-5) - a(n-7) + g(n-3) + g(n-5) + h(n-3).
Alternatively, let a(1)=1, a(n)=0 for n<1. Let b(1)=1, b(2)=0, b(3)=1, b(4)=3, b(5)=4, b(6)=5, b(7)=7, b(8)=10, and b(n)=b(n-1)+b(n-3) for n>8. Then:
a(n) = a(n-1)*b(1) + a(n-2)*b(2) + a(n-3)*b(3) + ... + a(1)*b(n-1).
From Colin Barker, Mar 07 2015 and Aug 13 2018: (Start)
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) + a(n-4) + a(n-5) - a(n-7) - a(n-8).
G.f.: x*(1 - x - x^3) / (1 - 2*x + x^2 - 2*x^3 - x^4 - x^5 + x^7 + x^8).
(End)