cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A118858 Decimal expansion of log(2)/Pi^2.

Original entry on oeis.org

0, 7, 0, 2, 3, 0, 4, 9, 2, 7, 7, 2, 6, 8, 2, 8, 7, 6, 4, 0, 8, 9, 3, 8, 5, 9, 9, 4, 9, 6, 9, 9, 7, 0, 0, 9, 6, 3, 2, 8, 7, 6, 5, 3, 2, 4, 4, 3, 2, 6, 2, 5, 4, 1, 3, 7, 7, 4, 3, 4, 3, 7, 8, 2, 2, 8, 2, 4, 9, 6, 4, 1, 3, 3, 6, 9, 6, 8, 5, 3, 4, 0, 1, 4, 2, 0, 1, 6, 9, 3, 5, 8, 0, 7, 3, 3, 4, 0, 0, 9, 4, 3, 2, 7, 6
Offset: 0

Views

Author

Eric W. Weisstein, May 02 2006

Keywords

Examples

			0.07023049277268287640...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Log[2]/Pi^2, 10, 100][[1]] (* Amiram Eldar, Jun 25 2021 *)
  • PARI
    log(2)/Pi^2 \\ Michel Marcus, Jun 25 2021

Formula

Equals lim_{n->oo} A328499(n)/n. - Amiram Eldar, Jun 25 2021
Equals Integral_{z>=0} z*sech(Pi*z)^2. - Peter Luschny, Aug 03 2021

A299706 Number of Pythagorean triples with perimeter <= 10^n.

Original entry on oeis.org

0, 17, 325, 4858, 64741, 808950, 9706567, 113236940, 1294080089, 14557915466
Offset: 1

Views

Author

Seiichi Manyama, Feb 26 2018

Keywords

Examples

			n = 2
perimeter | Pythagorean triple
-------------------------------
   12     | [ 3,  4,  5]
   30     | [ 5, 12, 13]
   24     | [ 6,  8, 10]
   56     | [ 7, 24, 25]
   40     | [ 8, 15, 17]
   36     | [ 9, 12, 15]
   90     | [ 9, 40, 41]
   60     | [10, 24, 26]
   48     | [12, 16, 20]
   84     | [12, 35, 37]
   60     | [15, 20, 25]
   90     | [15, 36, 39]
   80     | [16, 30, 34]
   72     | [18, 24, 30]
   70     | [20, 21, 29]
   84     | [21, 28, 35]
   96     | [24, 32, 40]
		

Crossrefs

Programs

  • Ruby
    def f(a, b, c, n)
      return 0 if a + b + c > n
      s = n / (a + b + c)
      s += f( a - 2 * b + 2 * c,  2 * a - b + 2 * c,  2 * a - 2 * b + 3 * c, n)
      s += f( a + 2 * b + 2 * c,  2 * a + b + 2 * c,  2 * a + 2 * b + 3 * c, n)
      s += f(-a + 2 * b + 2 * c, -2 * a + b + 2 * c, -2 * a + 2 * b + 3 * c, n)
      return s
    end
    def A299706(n)
      (1..n).map{|i| f(3, 4, 5, 10 ** i)}
    end
    p A299706(8)

A328499 The number of primitive Pythagorean triangles with perimeter less than n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
Offset: 1

Views

Author

Mo Li, Oct 17 2019

Keywords

Comments

D. N. Lehmer has proved that the asymptotic density of a(n) is a(n)/n = log(2)/Pi^2 = 0.07023049... See A118858.

Examples

			For n=90, the triples are
   {3,  4,  5},  3 +  4 +  5 = 12 < 90
   {5, 12, 13},  5 + 12 + 13 = 30 < 90
   {7, 24, 25},  7 + 24 + 25 = 56 < 90
   {8, 15, 17},  8 + 15 + 17 = 40 < 90
   {9, 40, 41},  9 + 40 + 41 = 90
  {12, 35, 37}, 12 + 35 + 37 = 84 < 90
  {20, 21, 29}, 20 + 21 + 29 = 70 < 90
so a(90)=7.
		

Crossrefs

Showing 1-3 of 3 results.