A249938 E.g.f.: Sum_{n>=0} exp(n^2*x) / 2^(n+1).
1, 3, 75, 4683, 545835, 102247563, 28091567595, 10641342970443, 5315654681981355, 3385534663256845323, 2677687796244384203115, 2574844419803190384544203, 2958279121074145472650648875, 4002225759844168492486127539083, 6297562064950066033518373935334635, 11403568794011880483742464196184901963
Offset: 0
Keywords
Examples
E.g.f.: A(x) = 1 + 3*x + 75*x^2/2! + 4683*x^3/3! + 545835*x^4/4! +... where the e.g.f. equals the infinite series: A(x) = 1/2 + exp(x)/2^2 + exp(4*x)/2^3 + exp(9*x)/2^4 + exp(16*x)/2^5 + exp(25*x)/2^6 + exp(36*x)/2^7 + exp(49*x)/2^8 +...
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..200
- Kwang-Wu Chen, Multinomial Sum Formulas of Multiple Zeta Values, arXiv:1704.05636 [math.NT], 2017.
Programs
-
Mathematica
Table[Sum[k! * StirlingS2[2*n, k],{k,0,2*n}],{n,0,20}] (* Vaclav Kotesovec, May 04 2015 *) Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i+k+r)*(i+r)^(n-r)/(i!*(k-i-r)!), {i, 0, k-r}], {k, r, n}]; a[n_] := Fubini[2n, 1]; a[0] = 1; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Mar 30 2016 *) Table[-PolyLog[-2*n, 2] / 2, {n, 0, 48}] (* Federico Provvedi, Nov 07 2020 *) HurwitzLerchPhi[1/2, -2*Range[0,48], 0] / 2 (* Federico Provvedi, Nov 11 2020 *) -HurwitzLerchPhi[2, -2*Range[0, 48], 1] (*Federico Provvedi,Nov 11 2020*)
-
PARI
/* E.g.f.: Sum_{n>=0} exp(n^2*x)/2^(n+1) */ \p100 \\ set precision {a(n) = round( n!*polcoeff(sum(m=0, 600, exp(m^2*x +x*O(x^n))/2^(m+1)*1.), n) )} for(n=0, 20, print1(a(n), ", "))
-
PARI
/* E.g.f.: (2 - cosh(x)) / (5 - 4*cosh(x)): */ {a(n) = local(X=x+O(x^(2*n+1))); (2*n)!*polcoeff( (2 - cosh(X)) / (5 - 4*cosh(X)) , 2*n)} for(n=0, 20, print1(a(n), ", "))
-
PARI
/* Formula for a(n): */ {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)} {a(n) = sum(k=0, 2*n, k! * Stirling2(2*n, k) )} for(n=0, 20, print1(a(n), ", "))
Formula
E.g.f.: (2 - cosh(x)) / (5 - 4*cosh(x)) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)!.
a(n) = Sum_{k=0..2*n} k! * Stirling2(2*n, k) for n>=0.
a(n) ~ (2*n)! / (2 * (log(2))^(2*n+1)). - Vaclav Kotesovec, May 04 2015
a(n) = Sum_{p=1..k, q=1..k} Stirling2(k,p)*Stirling2(k,q)*p!*q!*A008288(p, q) for n>1, where A008288 are the Delannoy numbers. See Chen link. - Michel Marcus, Apr 20 2017
a(n) = Sum_{k>=0} k^(2*n) / 2^(k + 1). - Ilya Gutkovskiy, Dec 19 2019
a(n) = -Polylog(-2*n, 2) / 2. - Federico Provvedi, Nov 07 2020
a(n) = Phi(1/2, -2*n, 0), where Phi(z,s,a) is the Hurwitz-Lerch Zeta transcendental function. - Federico Provvedi, Nov 11 2020
Comments