A251599 Centers of rows of the triangular array formed by the natural numbers.
1, 2, 3, 5, 8, 9, 13, 18, 19, 25, 32, 33, 41, 50, 51, 61, 72, 73, 85, 98, 99, 113, 128, 129, 145, 162, 163, 181, 200, 201, 221, 242, 243, 265, 288, 289, 313, 338, 339, 365, 392, 393, 421, 450, 451, 481, 512, 513, 545, 578, 579, 613, 648, 649, 685, 722, 723
Offset: 1
Keywords
Examples
First ten terms (1,2,3,5,8,9,13,18,19,25) may be read down the center of the triangular formation: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- David James Sycamore, A080827 & A000982
- Index entries for linear recurrences with constant coefficients, signature (1,0,2,-2,0,-1,1).
Crossrefs
Programs
-
Haskell
a251599 n = a251599_list !! (n-1) a251599_list = f 0 $ g 1 [1..] where f i (us:vs:wss) = [head $ drop i us] ++ (take 2 $ drop i vs) ++ f (i + 1) wss g k zs = ys : g (k + 1) xs where (ys,xs) = splitAt k zs -- Reinhard Zumkeller, Dec 12 2014
-
Maple
a:= n-> (m-> 2*(m+1)^2-[2*m+1, 0, -1][1+r])(iquo(n-1, 3, 'r')): seq(a(n), n=1..100); # Alois P. Heinz, Dec 10 2014
-
Mathematica
LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {1, 2, 3, 5, 8, 9, 13}, 60] (* Jean-François Alcover, Jan 09 2016 *)
-
PARI
Vec(-x*(x^2+1)*(x^4-x^3+x+1)/((x^2+x+1)^2*(x-1)^3) + O(x^80)) \\ Michel Marcus, Jan 09 2016
Formula
Terms for n=1 (mod 3): 2m^2+2m+1, for n=2 (mod 3): 2m^2+4m+2, for n=0 (mod 3): 2m^2+4m+3, where m = floor((n-1)/3).
G.f.: -x*(x^2+1)*(x^4-x^3+x+1)/((x^2+x+1)^2*(x-1)^3). - Alois P. Heinz, Dec 10 2014
Comments