cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A251599 Centers of rows of the triangular array formed by the natural numbers.

Original entry on oeis.org

1, 2, 3, 5, 8, 9, 13, 18, 19, 25, 32, 33, 41, 50, 51, 61, 72, 73, 85, 98, 99, 113, 128, 129, 145, 162, 163, 181, 200, 201, 221, 242, 243, 265, 288, 289, 313, 338, 339, 365, 392, 393, 421, 450, 451, 481, 512, 513, 545, 578, 579, 613, 648, 649, 685, 722, 723
Offset: 1

Views

Author

Dave Durgin, Dec 05 2014

Keywords

Comments

Forms a cascade of 3-number triangles down the center of the triangle array. Related to A000124 (left/west bank of same triangular array), A000217 (right/east bank) and A001844 (center column).
Sums of the mentioned cascading triangles: a(3*n-2) + a(3*n-1) + a(3*n) = A058331(n) + A001105(n) + A001844(n-1) = 2*A056106(n) = 2*(3*n^2-n+1). - Reinhard Zumkeller, Dec 13 2014
Union of A080827 and A000982. - David James Sycamore, Aug 09 2018

Examples

			First ten terms (1,2,3,5,8,9,13,18,19,25) may be read down the center of the triangular formation:
               1
             2   3
           4   5   6
         7   8   9  10
      11  12  13  14  15
    16  17  18  19  20  21
  22  23  24  25  26  27  28
		

Crossrefs

Cf. A092942 (first differences).

Programs

  • Haskell
    a251599 n = a251599_list !! (n-1)
    a251599_list = f 0 $ g 1 [1..] where
       f i (us:vs:wss) = [head $ drop i us] ++ (take 2 $ drop i vs) ++
                         f (i + 1) wss
       g k zs = ys : g (k + 1) xs where (ys,xs) = splitAt k zs
    -- Reinhard Zumkeller, Dec 12 2014
    
  • Maple
    a:= n-> (m-> 2*(m+1)^2-[2*m+1, 0, -1][1+r])(iquo(n-1, 3, 'r')):
    seq(a(n), n=1..100);  # Alois P. Heinz, Dec 10 2014
  • Mathematica
    LinearRecurrence[{1, 0, 2, -2, 0, -1, 1}, {1, 2, 3, 5, 8, 9, 13}, 60] (* Jean-François Alcover, Jan 09 2016 *)
  • PARI
    Vec(-x*(x^2+1)*(x^4-x^3+x+1)/((x^2+x+1)^2*(x-1)^3) + O(x^80)) \\ Michel Marcus, Jan 09 2016

Formula

Terms for n=1 (mod 3): 2m^2+2m+1, for n=2 (mod 3): 2m^2+4m+2, for n=0 (mod 3): 2m^2+4m+3, where m = floor((n-1)/3).
G.f.: -x*(x^2+1)*(x^4-x^3+x+1)/((x^2+x+1)^2*(x-1)^3). - Alois P. Heinz, Dec 10 2014