A251728 Semiprimes p*q for which p <= q < p^2.
4, 6, 9, 15, 21, 25, 35, 49, 55, 65, 77, 85, 91, 95, 115, 119, 121, 133, 143, 161, 169, 187, 203, 209, 217, 221, 247, 253, 259, 287, 289, 299, 301, 319, 323, 329, 341, 361, 377, 391, 403, 407, 437, 451, 473, 481, 493, 517, 527, 529, 533, 551, 559, 583, 589, 611, 629, 649, 667, 671, 689, 697, 703
Offset: 1
Keywords
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Carlos Rivera, Conjecture 90. Semiprimes/Primes ->log(2), The Prime Puzzles & Problems Connection.
- Wikipedia, Brocard's conjecture
Crossrefs
Programs
-
Haskell
a251728 n = a251728_list !! (n-1) a251728_list = filter f [1..] where f x = q < p ^ 2 && a010051' q == 1 where q = div x p; p = a020639 x -- Reinhard Zumkeller, Jan 06 2015
-
Mathematica
fQ[n_] := Block[{pf = FactorInteger@ n, p, q}, p = pf[[1, 1]]; q = pf[[-1, 1]]; And[p <= q < p^2, PrimeOmega@ n == 2]]; Select[Range@ 720, fQ] (* Michael De Vlieger, Oct 27 2015 *)
-
PARI
lista(nn) = forcomposite(n=1, nn, my(f = factor(n));if (#select(x->(x > n^(1/3)), f[,1]) == #f~, print1(n, ", "))); \\ Michel Marcus, Oct 27 2015
-
PARI
list(lim)=my(v=List()); forprime(q=2,sqrtnint((lim\1)^2,3), forprime(p=sqrtint(q)+1,min(q,lim\q), listput(v,p*q))); Set(v) \\ Charles R Greathouse IV, Oct 27 2015
-
Python
from math import isqrt from sympy import primepi, primerange def A251728(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(min(x//p,p**2)) for p in primerange(s+1))) return bisection(f,n,n) # Chai Wah Wu, Mar 05 2025
Formula
Limit_{n->oo} n*log(a(n))/a(n) = log(2). - Alain Rocchelli, Nov 10 2022
Comments