cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A078898 Number of times the smallest prime factor of n is the smallest prime factor for numbers <= n; a(0)=0, a(1)=1.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 9, 1, 10, 4, 11, 1, 12, 2, 13, 5, 14, 1, 15, 1, 16, 6, 17, 3, 18, 1, 19, 7, 20, 1, 21, 1, 22, 8, 23, 1, 24, 2, 25, 9, 26, 1, 27, 4, 28, 10, 29, 1, 30, 1, 31, 11, 32, 5, 33, 1, 34, 12, 35, 1, 36, 1, 37, 13, 38, 3, 39, 1, 40, 14, 41, 1, 42, 6, 43
Offset: 0

Views

Author

Reinhard Zumkeller, Dec 12 2002

Keywords

Comments

From Antti Karttunen, Dec 06 2014: (Start)
For n >= 2, a(n) tells in which column of the sieve of Eratosthenes (see A083140, A083221) n occurs in. A055396 gives the corresponding row index.
(End)

Crossrefs

Programs

  • Haskell
    import Data.IntMap (empty, findWithDefault, insert)
    a078898 n = a078898_list !! n
    a078898_list = 0 : 1 : f empty 2 where
       f m x = y : f (insert p y m) (x + 1) where
               y = findWithDefault 0 p m + 1
               p = a020639 x
    -- Reinhard Zumkeller, Apr 06 2015
  • Maple
    N:= 1000: # to get a(0) to a(N)
    Primes:= select(isprime, [2,seq(2*i+1,i=1..floor((N-1)/2))]):
    A:= Vector(N):
    for p in Primes do
      t:= 1:
      A[p]:= 1:
      for n from p^2 to N by p do
        if A[n] = 0 then
           t:= t+1:
           A[n]:= t
        fi
      od
    od:
    0,1,seq(A[i],i=2..N); # Robert Israel, Jan 04 2015
  • Mathematica
    Module[{nn=90,spfs},spfs=Table[FactorInteger[n][[1,1]],{n,nn}];Table[ Count[ Take[spfs,i],spfs[[i]]],{i,nn}]] (* Harvey P. Dale, Sep 01 2014 *)
  • PARI
    \\ Not practical for computing, but demonstrates the sum moebius formula:
    A020639(n) = { if(1==n,n,vecmin(factor(n)[, 1])); };
    A055396(n) = { if(1==n,0,primepi(A020639(n))); };
    A002110(n) = prod(i=1, n, prime(i));
    A078898(n) = { my(k,p); if(1==n, n, k = A002110(A055396(n)-1); p = A020639(n); sumdiv(k, d, moebius(d)*(n\(p*d)))); };
    \\ Antti Karttunen, Dec 05 2014
    
  • Scheme
    ;; With memoizing definec-macro.
    (definec (A078898 n) (if (< n 2) n (+ 1 (A078898 (A249744 n)))))
    ;; Much better for computing. Needs also code from A249738 and A249744. - Antti Karttunen, Dec 06 2014
    

Formula

Ordinal transform of A020639 (Lpf). - Franklin T. Adams-Watters, Aug 28 2006
From Antti Karttunen, Dec 05-08 2014: (Start)
a(0) = 0, a(1) = 1, a(n) = 1 + a(A249744(n)).
a(0) = 0, a(1) = 1, a(n) = sum_{d | A002110(A055396(n)-1)} moebius(d) * floor(n / (A020639(n)*d)).
a(0) = 0, a(1) = 1, a(n) = sum_{d | A002110(A055396(n)-1)} moebius(d) * floor(A032742(n) / d).
[Instead of Moebius mu (A008683) one could use Liouville's lambda (A008836) in the above formulas, because all primorials (A002110) are squarefree. A020639(n) gives the smallest prime dividing n, and A055396 gives its index].
a(0) = 0, a(1) = 1, a(2n) = n, a(2n+1) = a(A250470(2n+1)). [After a similar recursive formula for A246277. However, this cannot be used for computing the sequence, unless a definition for A250470(n) is found which doesn't require computing the value of A078898(n).]
For n > 1: a(n) = A249810(n) - A249820(n).
(End)
Other identities:
a(2*n) = n.
For n > 1: a(n)=1 if and only if n is prime.
For n > 1: a(n) = A249808(n, A055396(n)) = A249809(n, A055396(n)).
For n > 1: a(n) = A246277(A249818(n)).
From Antti Karttunen, Jan 04 2015: (Start)
a(n) = 2 if and only if n is a square of a prime.
For all n >= 1: a(A251728(n)) = A243055(A251728(n)) + 2. That is, if n is a semiprime of the form prime(i)*prime(j), prime(i) <= prime(j) < prime(i)^2, then a(n) = (j-i)+2.
(End)
a(A000040(n)^2) = 2; a(A000040(n)*A000040(n+1)) = 3. - Reinhard Zumkeller, Apr 06 2015
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Sum_{k>=1} (A038110(k)/A038111(k))^2 = 0.2847976823663... . - Amiram Eldar, Oct 26 2024

Extensions

a(0) = 0 prepended for recurrence's sake by Antti Karttunen, Dec 06 2014

A083221 Sieve of Eratosthenes arranged as an array and read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 21, 35, 49, 11, 12, 27, 55, 77, 121, 13, 14, 33, 65, 91, 143, 169, 17, 16, 39, 85, 119, 187, 221, 289, 19, 18, 45, 95, 133, 209, 247, 323, 361, 23, 20, 51, 115, 161, 253, 299, 391, 437, 529, 29, 22, 57, 125, 203, 319, 377, 493, 551, 667
Offset: 2

Views

Author

Yasutoshi Kohmoto, Jun 05 2003

Keywords

Comments

This is permutation of natural numbers larger than 1.
From Antti Karttunen, Dec 19 2014: (Start)
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252460 gives an inverse permutation. See also A249741.
For navigating in this array:
A055396(n) gives the row number of row where n occurs, and A078898(n) gives its column number, both starting their indexing from 1.
A250469(n) gives the number immediately below n, and when n is an odd number >= 3, A250470(n) gives the number immediately above n. If n is a composite, A249744(n) gives the number immediately left of n.
First cube of each row, which is {the initial prime of the row}^3 and also the first number neither a prime or semiprime, occurs on row n at position A250474(n).
(End)
The n-th row contains the numbers whose least prime factor is the n-th prime: A020639(T(n,k)) = A000040(n). - Franklin T. Adams-Watters, Aug 07 2015

Examples

			The top left corner of the array:
   2,   4,   6,    8,   10,   12,   14,   16,   18,   20,   22,   24,   26
   3,   9,  15,   21,   27,   33,   39,   45,   51,   57,   63,   69,   75
   5,  25,  35,   55,   65,   85,   95,  115,  125,  145,  155,  175,  185
   7,  49,  77,   91,  119,  133,  161,  203,  217,  259,  287,  301,  329
  11, 121, 143,  187,  209,  253,  319,  341,  407,  451,  473,  517,  583
  13, 169, 221,  247,  299,  377,  403,  481,  533,  559,  611,  689,  767
  17, 289, 323,  391,  493,  527,  629,  697,  731,  799,  901, 1003, 1037
  19, 361, 437,  551,  589,  703,  779,  817,  893, 1007, 1121, 1159, 1273
  23, 529, 667,  713,  851,  943,  989, 1081, 1219, 1357, 1403, 1541, 1633
  29, 841, 899, 1073, 1189, 1247, 1363, 1537, 1711, 1769, 1943, 2059, 2117
  ...
		

Crossrefs

Transpose of A083140.
One more than A249741.
Inverse permutation: A252460.
Column 1: A000040, Column 2: A001248.
Row 1: A005843, Row 2: A016945, Row 3: A084967, Row 4: A084968, Row 5: A084969, Row 6: A084970.
Main diagonal: A083141.
First semiprime in each column occurs at A251717; A251718 & A251719 with additional criteria. A251724 gives the corresponding semiprimes for the latter. See also A251728.
Permutations based on mapping numbers between this array and A246278: A249817, A249818, A250244, A250245, A250247, A250249. See also: A249811, A249814, A249815.
Also used in the definition of the following arrays of permutations: A249821, A251721, A251722.

Programs

  • Mathematica
    lim = 11; a = Table[Take[Prime[n] Select[Range[lim^2], GCD[# Prime@ n, Product[Prime@ i, {i, 1, n - 1}]] == 1 &], lim], {n, lim}]; Flatten[Table[a[[i, n - i + 1]], {n, lim}, {i, n}]] (* Michael De Vlieger, Jan 04 2016, after Yasutoshi Kohmoto at A083140 *)

Extensions

More terms from Hugo Pfoertner, Jun 13 2003

A138511 Semiprimes where the larger prime factor is greater than the square of the smaller prime factor, short: semiprimes p*q, p^2 < q.

Original entry on oeis.org

10, 14, 22, 26, 33, 34, 38, 39, 46, 51, 57, 58, 62, 69, 74, 82, 86, 87, 93, 94, 106, 111, 118, 122, 123, 129, 134, 141, 142, 145, 146, 155, 158, 159, 166, 177, 178, 183, 185, 194, 201, 202, 205, 206, 213, 214, 215, 218, 219, 226, 235, 237, 249, 254, 262, 265, 267, 274, 278, 291, 295, 298, 302, 303, 305
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 21 2008

Keywords

Comments

From Antti Karttunen, Dec 17 2014, further edited Jan 01 & 04 2014: (Start)
Semiprimes p*q, p < q, such that the smallest r for which r^k <= p and q < r^(k+1) [for some k >= 0] is q+1, and thus k = 0. In other words, semiprimes whose both prime factors do not fit (simultaneously) between any two consecutive powers of any natural number r less than or equal to the larger prime factor. This condition forces the larger prime factor q to be greater than the square of the smaller prime factor because otherwise the opposite condition given in A251728 would hold.
Assuming that A054272(n), the number of primes in interval [prime(n), prime(n)^2], is nondecreasing (implied for example if Legendre's or Brocard's conjecture is true), these are also "unsettled" semiprimes that occur in a square array A083221 constructed from the sieve of Eratosthenes, "above the line A251719", meaning that if and only if row < A251719(col) then a semiprime occurring at A083221(row, col) is in this sequence, and conversely, all the semiprimes that occur at any position A083221(row, col) where row >= A251719(col) are in the complementary sequence A251728.
(End)
Semiprimes p*q, p < q, such that b = q+1 is the minimal base with the property that p and q have equal length representations in base b. This was the original definition, which is based primarily on A138510: A138510(A174956(a(n))) = A084127(A174956(a(n))) + 1.

Examples

			See A138510.
		

Crossrefs

Cf. A138510.
Complement of A251728 in A001358.
Subsequence of A088381.
An intersection of A001358 (semiprimes) and A251727.
Also an intersection of A001358 and A253569, from the latter which this sequence differs for the first time at n=60, where A253569(60) = 290, while here a(60) = 291.
Also an intersection A001358 and A245729.

Programs

Formula

Other identities. For all n >= 1 it holds that:
A138510(A174956(a(n))) = A084127(A174956(a(n))) + 1.

Extensions

Wrong comment corrected by Reinhard Zumkeller, Dec 16 2014
New definition by Antti Karttunen, Jan 01 2015; old definition moved to comment.
More terms from Antti Karttunen, Jan 09 2015

A251726 Numbers n > 1 for which gpf(n) < lpf(n)^2, where lpf and gpf (least and greatest prime factor of n) are given by A020639(n) and A006530(n).

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 31, 32, 35, 36, 37, 41, 43, 45, 47, 48, 49, 53, 54, 55, 59, 61, 63, 64, 65, 67, 71, 72, 73, 75, 77, 79, 81, 83, 85, 89, 91, 95, 96, 97, 101, 103, 105, 107, 108, 109, 113, 115, 119, 121, 125, 127, 128, 131, 133, 135, 137, 139, 143, 144
Offset: 1

Views

Author

Antti Karttunen, Dec 17 2014

Keywords

Comments

Numbers n > 1 for which there exists r <= gpf(n) such that r^k <= lpf(n) and gpf(n) < r^(k+1) for some k >= 0, where lpf and gpf (least and greatest prime factor of n) are given by A020639(n) and A006530(n) (the original, equivalent definition of the sequence).
Numbers n > 1 such that A252375(n) < 1 + A006530(n). Equally, one can substitute A251725 for A252375.
These are numbers n all of whose prime factors "fit between" two consecutive powers of some positive integer which itself is <= the largest prime factor of n.
Conjecture: If any n is in the sequence, then so is A003961(n).
Note: if Legendre's or Brocard's conjecture is true, then the above conjecture is true as well. See my comments at A251728. - Antti Karttunen, Jan 01 2015

Examples

			For 35 = 5*7, 7 is less than 5^2, thus 35 is included.
For 90 = 2*3*3*5, 5 is not less than 2^2, thus 90 is NOT included.
For 105 = 3*5*7, 7 is less than 3^2, thus 105 is included.
		

Crossrefs

Complement: A251727. Subsequences: A251728, A000961 (after 1).
Characteristic function: A252372. Inverse function: A252373.
Gives the positions of zeros in A252459 (after its initial zero), cf. also A284261.
Cf. A252370 (gives the difference between the prime indices of gpf and lpf for each a(n)).
Sequence gives all n > 1 for which A284252(n) (equally: A284254) is 1, and A284256(n) (equally A284258) is 0, and also n > 1 such that A284260(n) = A006530(n).
Related permutations: A252757-A252758.

Programs

  • Mathematica
    pfQ[n_]:=Module[{f=FactorInteger[n]},f[[-1,1]]Harvey P. Dale, May 01 2015 *)
  • PARI
    for(n=2, 150, if(vecmax(factor(n)[,1]) < vecmin(factor(n)[,1])^2, print1(n,", "))) \\ Indranil Ghosh, Mar 24 2017
    
  • Python
    from sympy import primefactors
    print([n for n in range(2, 150) if max(primefactors(n))Indranil Ghosh, Mar 24 2017

Formula

Other identities. For all n >= 1:
A252373(a(n)) = n. [A252373 works as an inverse or ranking function for this sequence.]

Extensions

A new simpler definition found Jan 01 2015 and the original definition moved to the Comments section.

A138510 Smallest number b such that in base b the prime factors of the n-th semiprime (A001358) have equal lengths.

Original entry on oeis.org

1, 2, 1, 6, 8, 3, 3, 12, 1, 14, 12, 18, 2, 20, 14, 24, 1, 18, 4, 20, 30, 32, 4, 24, 38, 4, 42, 5, 44, 30, 4, 32, 48, 5, 54, 38, 5, 60, 5, 1, 62, 42, 44, 5, 68, 48, 72, 2, 30, 74, 32, 80, 54, 5, 84, 1, 60, 90, 62, 38, 3, 98, 68, 102, 6, 42, 104, 3, 72, 108, 44, 6, 110, 74, 3, 114, 48, 80
Offset: 1

Views

Author

Reinhard Zumkeller, Mar 21 2008

Keywords

Comments

a(n) = 1 iff A001358(n) is the square of a prime (A001248);
Equally, 1 if A001358(n) = p^2, otherwise, if A001358(n) = p*q (p, q primes, p < q), then a(n) = A252375(n) = the least r such that r^k <= p < q < r^(k+1), for some k >= 0. - Antti Karttunen, Dec 16 2014
a(A174956(A085721(n))) <= 2. - Reinhard Zumkeller, Dec 19 2014

Examples

			For n=31, the n-th semiprime is A001358(31) = 91 = 7*13;
     7 =  111_2 =  21_3 = 13_4
and 13 = 1101_2 = 111_3 = 31_4, so a(31) = 4. [corrected by _Jon E. Schoenfield_, Sep 23 2018]
.
Illustration of initial terms, n <= 25:
.   n | A001358(n) =  p * q |  b = a(n) | p and q in base b
. ----+---------------------+-----------+-------------------
.   1 |       4       2   2 |      1    |     [1]        [1]
.   2 |       6       2   3 |      2    |   [1,0]      [1,1]
.   3 |       9       3   3 |      1    | [1,1,1]    [1,1,1]
.   4 |  **  10       2   5 |      6    |     [2]        [5]
.   5 |  **  14       2   7 |      8    |     [2]        [7]
.   6 |      15       3   5 |      3    |   [1,0]      [1,2]
.   7 |      21       3   7 |      3    |   [1,0]      [2,1]
.   8 |  **  22       2  11 |     12    |     [2]       [11]
.   9 |      25       5   5 |      1    |   [1]^5      [1]^5
.  10 |  **  26       2  13 |     14    |     [2]       [13]
.  11 |  **  33       3  11 |     12    |     [3]       [11]
.  12 |  **  34       2  17 |     18    |     [2]       [17]
.  13 |      35       5   7 |      2    | [1,0,1]    [1,1,1]
.  14 |  **  38       2  19 |     20    |     [2]       [19]
.  15 |  **  39       3  13 |     14    |     [3]       [13]
.  16 |  **  46       2  23 |     24    |     [2]       [23]
.  17 |      49       7   7 |      1    |   [1]^7      [1]^7
.  18 |  **  51       3  17 |     18    |     [3]       [17]
.  19 |      55       5  11 |      4    |   [1,1]      [2,3]
.  20 |  **  57       3  19 |     20    |     [3]       [19]
.  21 |  **  58       2  29 |     30    |     [2]       [29]
.  22 |  **  62       2  31 |     32    |     [2]       [31]
.  23 |      65       5  13 |      4    |   [1,1]      [3,1]
.  24 |  **  69       3  23 |     24    |     [3]       [23]
.  25 |  **  74       2  37 |     38    |     [2]       [37]
where p = A084126(n) and q = A084127(n),
semiprimes marked with ** indicate terms of A138511, i.e. b = q + 1.
		

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex, unfoldr); import Data.Tuple (swap)
    import Data.Maybe (mapMaybe)
    a138510 n = genericIndex a138510_list (n - 1)
    a138510_list = mapMaybe f [1..] where
      f x | a010051' q == 0 = Nothing
          | q == p          = Just 1
          | otherwise       = Just $
            head [b | b <- [2..], length (d b p) == length (d b q)]
          where q = div x p; p = a020639 x
      d b = unfoldr (\z -> if z == 0 then Nothing else Just $ swap $ divMod z b)
    -- Reinhard Zumkeller, Dec 16 2014
    
  • Scheme
    (define (A138510 n) (A251725 (A001358 n))) ;; Antti Karttunen, Dec 16 2014

Formula

a(n) = A251725(A001358(n)). - Antti Karttunen, Dec 16 2014

Extensions

Wrong comment corrected by Reinhard Zumkeller, Dec 16 2014

A138109 Positive integers k whose smallest prime factor is greater than the cube root of k and strictly less than the square root of k.

Original entry on oeis.org

6, 15, 21, 35, 55, 65, 77, 85, 91, 95, 115, 119, 133, 143, 161, 187, 203, 209, 217, 221, 247, 253, 259, 287, 299, 301, 319, 323, 329, 341, 377, 391, 403, 407, 437, 451, 473, 481, 493, 517, 527, 533, 551, 559, 583, 589, 611, 629, 649, 667, 671, 689, 697, 703
Offset: 1

Views

Author

David S. Newman, May 04 2008

Keywords

Comments

This sequence was suggested by Moshe Shmuel Newman.
A020639(n)^2 < a(n) < A020639(n)^3. - Reinhard Zumkeller, Dec 17 2014
In other words, k = p*q with primes p, q satisfying p < q < p^2. - Charles R Greathouse IV, Apr 03 2017
If "strictly less than" in the definition were changed to "less than or equal to" then this sequence would also include the squares of primes (A001248), resulting in A251728. - Jon E. Schoenfield, Dec 27 2022

Examples

			6 is a term because the smallest prime factor of 6 is 2 and 6^(1/3) = 1.817... < 2 < 2.449... = sqrt(6).
From _Michael De Vlieger_, Apr 27 2024: (Start):
Table of p*q where p = prime(n) and q = prime(n+k):
n\k   1     2     3     4     5     6     7     8     9    10    11
-------------------------------------------------------------------
1:    6;
2:   15,   21;
3:   35,   55,   65,   85,   95,  115;
4:   77,   91,  119,  133,  161,  203,  217,  259,  287,  301,  329;
     ... (End)
		

Crossrefs

Subsequence of A251728 and of A006881. A006094 is a proper subset.

Programs

  • Haskell
    a138109 n = a138109_list !! (n-1)
    a138109_list = filter f [1..] where
       f x = p ^ 2 < x && x < p ^ 3 where p = a020639 x
    -- Reinhard Zumkeller, Dec 17 2014
    
  • Mathematica
    s = {}; Do[f = FactorInteger[i]; test = f[[1]][[1]]; If [test < N[i^(1/2)] && test > N[i^(1/3)], s = Union[s, {i}]], {i, 2, 2000}]; Print[s]
    Select[Range[1000],Surd[#,3]Harvey P. Dale, May 10 2015 *)
  • PARI
    is(n)=my(f=factor(n)); f[,2]==[1,1]~ && f[1,1]^3 > n \\ Charles R Greathouse IV, Mar 28 2017
    
  • PARI
    list(lim)=if(lim<6, return([])); my(v=List([6])); forprime(p=3,sqrtint(1+lim\=1)-1, forprime(q=p+2, min(p^2-2,lim\p), listput(v,p*q))); Set(v) \\ Charles R Greathouse IV, Mar 28 2017
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A138109(n):
        def bisection(f,kmin=0,kmax=1):
            while f(kmax) > kmax: kmax <<= 1
            kmin = kmax >> 1
            while kmax-kmin > 1:
                kmid = kmax+kmin>>1
                if f(kmid) <= kmid:
                    kmax = kmid
                else:
                    kmin = kmid
            return kmax
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(min(x//p,p**2)) for p in primerange(s+1)))
        return bisection(f,n,n) # Chai Wah Wu, Mar 05 2025

Formula

From Michael De Vlieger, Apr 27 2024: (Start)
Let k = a(n); row k of A162306 = {1, p, q, p^2, p*q}, therefore A010846(k) = 5.
A079047(n) = card({ q : p < q < p^2 }), p and q primes. (End)

A253784 Numbers which have no two successive prime factors (when sorted into monotonic order) where the latter prime factor would be greater than the square of the former.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30, 31, 32, 35, 36, 37, 41, 42, 43, 45, 47, 48, 49, 53, 54, 55, 59, 60, 61, 63, 64, 65, 67, 71, 72, 73, 75, 77, 79, 81, 83, 84, 85, 89, 90, 91, 95, 96, 97, 101, 103, 105, 107, 108, 109, 113, 115, 119, 120, 121, 125, 126, 127, 128, 131, 133, 135, 137, 139, 143, 144
Offset: 1

Views

Author

Antti Karttunen, Jan 16 2015

Keywords

Comments

In other words, {1} together with primes and such composite numbers n = p_i * p_j * p_k * ... * p_u, p_i <= p_j <= p_k <= ... <= p_u, where each successive prime factor (when sorted into a nondecreasing order) is less than the square of the previous: (p_i)^2 > p_j, (p_j)^2 > p_k, etc.
Whenever gcd(a(i),a(j)) > 1, then a(i)*a(j) and lcm(a(i),a(j)) are also members of this sequence.

Examples

			1 is present as it has an empty prime factorization.
2 like all primes is present.
4 = 2*2 is present as 2^2 > 2.
9 = 3*3 is present as 3^2 > 3.
10 = 2*5 is NOT present, as 2^2 < 5.
30 = 2*3*5 is present, as 2^2 > 3 and 3^2 > 5.
		

Crossrefs

Complement: A253785.
Subsequences: A251726 (a(n+1) differs from A251726(n) for the first time at n=23, where a(24) = 30, while A251726(23) = 31), A251728 (semiprimes only).
Subsequence of A253567.
Cf. A000290.

A253567 Noncomposites together with such composites n = p_i * p_j * p_k * ... * p_u, p_i <= p_j <= p_k <= ... <= p_u, where there is at least one such pair of successive prime factors (when sorted into a nondecreasing order) that the square of the former is larger than the latter: (p_i)^2 > p_j or (p_j)^2 > p_k, etc.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25, 27, 28, 29, 30, 31, 32, 35, 36, 37, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 55, 56, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 75, 76, 77, 78, 79, 80, 81, 83, 84, 85, 88, 89, 90, 91, 92, 95, 96, 97, 98, 99, 100
Offset: 1

Views

Author

Antti Karttunen, Jan 16 2015

Keywords

Examples

			4 = 2*2 is present as 2^2 > 2.
6 = 2*3 is present as 2^2 > 3.
70 = 2*5*7 is present as 5^2 > 7.
		

Crossrefs

Complement: A253569.
Subsequences: A008578, A013929, A251728, A253784.
Cf. A001222.

A251724 a(1) = 2, and for n>1: a(n) = prime(A251719(n)) * prime(A251719(n) + n - 2), where prime(n) gives the n-th prime.

Original entry on oeis.org

2, 4, 6, 21, 65, 85, 95, 115, 217, 259, 287, 301, 329, 649, 671, 737, 781, 803, 869, 913, 979, 1067, 1111, 1133, 1177, 1199, 1243, 1703, 1781, 1807, 1937, 1963, 2041, 2119, 2171, 3043, 3077, 3247, 3281, 3349, 3383, 3587, 3791, 3859, 3893, 3961, 4063, 4097, 4267, 4369, 4471, 4573, 4607, 4709, 4777, 4811, 5833, 5909, 5947, 6023, 6289, 6403, 6593, 6631, 6707, 6821, 8579
Offset: 1

Views

Author

Antti Karttunen, Dec 15 2014

Keywords

Comments

For n >= 2: a(n) = the first "settled semiprime" in the column n of the sieve of Eratosthenes: a(n) = A083221(A251719(n), n).
The "settling of semiprimes" here means that from that semiprime onward, all the other terms in the same column n of a square array A083221 (which is constructed from the sieve of Eratosthenes) are also semiprimes, obtained by successive iterations of A003961 starting from the semiprime here given as a(n). Cf. comments in A251728 which contains all such semiprimes. The "unsettled" semiprimes are in its complement A138511.
Here we assume that A054272(n), the number of primes in interval [prime(n), prime(n)^2], is nondecreasing (implied for example if Legendre's or Brocard's conjecture is true).

Crossrefs

After initial 2, a subsequence of A251728 and A001358.

Formula

a(1) = 2; and for n >= 2: a(n) = A000040(A251719(n)) * A000040(A251719(n) + n - 2).
a(n) = A083221(A251719(n), n).
Other identities implied by the definition. For all n >= 1:
A078898(a(n)) = n.
A055396(a(n)) = A251719(n).
For all n >= 2:
A243055(a(n)) = n-2.

A280693 Numbers n such that A003961(n) = A250469(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 35, 37, 41, 43, 47, 49, 50, 52, 53, 55, 59, 61, 65, 66, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 121, 127, 131, 133, 137, 139, 143, 149, 151, 157, 161, 163, 167, 169, 173, 179, 181, 186, 187, 191, 193, 197, 199, 203
Offset: 1

Views

Author

Antti Karttunen, Mar 08 2017

Keywords

Comments

Positions of zeros in A280692. Conjectured to be also the positions of ones in A280703.
For most terms k of this sequence A003961(k) is also included as a term. Exceptions are: 50, 52, 66, 186, 435, 1245, 1445, 2068, 2085, 11605, ... that seems to be a subsequence of all those terms that have more than two prime factors: 50, 52, 66, 186, 435, 1245, 1445, 2068, 2085, 8695, 11605, ...
Note how 8695 = 5*37*47 and A003961(8695) = 7*41*53 = 15211 = A003961(8695) = A250469(8695) (for no apparent reason?).

Crossrefs

Fixed points of permutations A266645 & A266646.
Cf. A000040, A001248, A006094, A251728 (subsequences).
Cf. also arrays A083221 and A246278.

Programs

  • Mathematica
    f[n_] := f[n] = Which[n == 1, 1, PrimeQ@ n, NextPrime@ n, True, Times @@ Replace[FactorInteger[n], {p_, e_} :> f[p]^e, 1]]; g[n_] := If[n == 1, 0, PrimePi@ FactorInteger[n][[1, 1]]]; With[{nn = 204}, Function[s, Function[t, Select[Range@ nn, f@ # == t[[#]] &]]@ MapIndexed[Lookup[s, g[First@ #2] + 1][[#1]] - Boole[First@ #2 == 1] &, #] &@ Map[Position[Lookup[s, g@ #], #][[1, 1]] &, Range@ nn]]@ PositionIndex@ Array[g, 10^4]] (* Michael De Vlieger, Mar 08 2017, Version 10 *)
Showing 1-10 of 17 results. Next