A365965 Numbers k such that A139315(k) = 0 but k is not in A138511.
30, 50, 68, 76, 90, 92, 98, 116, 124, 132, 148, 150, 154, 160, 164, 165, 172, 174, 182
Offset: 1
Examples
30 is not in A138511, but A139315(30)=0.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
30 is not in A138511, but A139315(30)=0.
From _Gus Wiseman_, May 27 2021: (Start) The sequence of terms together with their prime factors begins: 4 = 2*2 46 = 2*23 91 = 7*13 141 = 3*47 6 = 2*3 49 = 7*7 93 = 3*31 142 = 2*71 9 = 3*3 51 = 3*17 94 = 2*47 143 = 11*13 10 = 2*5 55 = 5*11 95 = 5*19 145 = 5*29 14 = 2*7 57 = 3*19 106 = 2*53 146 = 2*73 15 = 3*5 58 = 2*29 111 = 3*37 155 = 5*31 21 = 3*7 62 = 2*31 115 = 5*23 158 = 2*79 22 = 2*11 65 = 5*13 118 = 2*59 159 = 3*53 25 = 5*5 69 = 3*23 119 = 7*17 161 = 7*23 26 = 2*13 74 = 2*37 121 = 11*11 166 = 2*83 33 = 3*11 77 = 7*11 122 = 2*61 169 = 13*13 34 = 2*17 82 = 2*41 123 = 3*41 177 = 3*59 35 = 5*7 85 = 5*17 129 = 3*43 178 = 2*89 38 = 2*19 86 = 2*43 133 = 7*19 183 = 3*61 39 = 3*13 87 = 3*29 134 = 2*67 185 = 5*37 (End)
a001358 n = a001358_list !! (n-1) a001358_list = filter ((== 2) . a001222) [1..]
[n: n in [2..200] | &+[d[2]: d in Factorization(n)] eq 2]; // Bruno Berselli, Sep 09 2015
A001358 := proc(n) option remember; local a; if n = 1 then 4; else for a from procname(n-1)+1 do if numtheory[bigomega](a) = 2 then return a; end if; end do: end if; end proc: seq(A001358(n), n=1..120) ; # R. J. Mathar, Aug 12 2010
Select[Range[200], Plus@@Last/@FactorInteger[#] == 2 &] (* Zak Seidov, Jun 14 2005 *) Select[Range[200], PrimeOmega[#]==2&] (* Harvey P. Dale, Jul 17 2011 *)
select( isA001358(n)={bigomega(n)==2}, [1..199]) \\ M. F. Hasler, Apr 09 2008; added select() Apr 24 2019
list(lim)=my(v=List(),t);forprime(p=2, sqrt(lim), t=p;forprime(q=p, lim\t, listput(v,t*q))); vecsort(Vec(v)) \\ Charles R Greathouse IV, Sep 11 2011
A1358=List(4); A001358(n)={while(#A1358M. F. Hasler, Apr 24 2019
from sympy import factorint def ok(n): return sum(factorint(n).values()) == 2 print([k for k in range(1, 190) if ok(k)]) # Michael S. Branicky, Apr 30 2022
from math import isqrt from sympy import primepi, prime def A001358(n): def f(x): return int(n+x-sum(primepi(x//prime(k))-k+1 for k in range(1, primepi(isqrt(x))+1))) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Jul 23 2024
The top left corner of the array: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26 3, 9, 15, 21, 27, 33, 39, 45, 51, 57, 63, 69, 75 5, 25, 35, 55, 65, 85, 95, 115, 125, 145, 155, 175, 185 7, 49, 77, 91, 119, 133, 161, 203, 217, 259, 287, 301, 329 11, 121, 143, 187, 209, 253, 319, 341, 407, 451, 473, 517, 583 13, 169, 221, 247, 299, 377, 403, 481, 533, 559, 611, 689, 767 17, 289, 323, 391, 493, 527, 629, 697, 731, 799, 901, 1003, 1037 19, 361, 437, 551, 589, 703, 779, 817, 893, 1007, 1121, 1159, 1273 23, 529, 667, 713, 851, 943, 989, 1081, 1219, 1357, 1403, 1541, 1633 29, 841, 899, 1073, 1189, 1247, 1363, 1537, 1711, 1769, 1943, 2059, 2117 ...
lim = 11; a = Table[Take[Prime[n] Select[Range[lim^2], GCD[# Prime@ n, Product[Prime@ i, {i, 1, n - 1}]] == 1 &], lim], {n, lim}]; Flatten[Table[a[[i, n - i + 1]], {n, lim}, {i, n}]] (* Michael De Vlieger, Jan 04 2016, after Yasutoshi Kohmoto at A083140 *)
a084127 = a006530 . a001358 -- Reinhard Zumkeller, Nov 25 2012
FactorInteger[#][[-1, 1]]& /@ Select[Range[1000], PrimeOmega[#] == 2&] (* Jean-François Alcover, Nov 17 2021 *)
lista(nn) = {for (n=2, nn, if (bigomega(n)==2, f = factor(n); print1(f[length(f~),1], ", ")););} \\ Michel Marcus, Jun 05 2013
from math import isqrt from sympy import primepi, primerange, primefactors def A084127(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1))) return max(primefactors(bisection(f,n,n))) # Chai Wah Wu, Oct 23 2024
a084126 = a020639 . a001358 -- Reinhard Zumkeller, Nov 25 2012
FactorInteger[#][[1,1]]&/@Select[Range[500],PrimeOmega[#]==2&] (* Harvey P. Dale, Jun 25 2018 *)
from sympy import primepi, primerange, primefactors def A084126(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//p) for p in primerange(s+1))) return min(primefactors(bisection(f,n,n))) # Chai Wah Wu, Apr 03 2025
a251728 n = a251728_list !! (n-1) a251728_list = filter f [1..] where f x = q < p ^ 2 && a010051' q == 1 where q = div x p; p = a020639 x -- Reinhard Zumkeller, Jan 06 2015
fQ[n_] := Block[{pf = FactorInteger@ n, p, q}, p = pf[[1, 1]]; q = pf[[-1, 1]]; And[p <= q < p^2, PrimeOmega@ n == 2]]; Select[Range@ 720, fQ] (* Michael De Vlieger, Oct 27 2015 *)
lista(nn) = forcomposite(n=1, nn, my(f = factor(n));if (#select(x->(x > n^(1/3)), f[,1]) == #f~, print1(n, ", "))); \\ Michel Marcus, Oct 27 2015
list(lim)=my(v=List()); forprime(q=2,sqrtnint((lim\1)^2,3), forprime(p=sqrtint(q)+1,min(q,lim\q), listput(v,p*q))); Set(v) \\ Charles R Greathouse IV, Oct 27 2015
from math import isqrt from sympy import primepi, primerange def A251728(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return int(n+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(min(x//p,p**2)) for p in primerange(s+1))) return bisection(f,n,n) # Chai Wah Wu, Mar 05 2025
For n=31, the n-th semiprime is A001358(31) = 91 = 7*13; 7 = 111_2 = 21_3 = 13_4 and 13 = 1101_2 = 111_3 = 31_4, so a(31) = 4. [corrected by _Jon E. Schoenfield_, Sep 23 2018] . Illustration of initial terms, n <= 25: . n | A001358(n) = p * q | b = a(n) | p and q in base b . ----+---------------------+-----------+------------------- . 1 | 4 2 2 | 1 | [1] [1] . 2 | 6 2 3 | 2 | [1,0] [1,1] . 3 | 9 3 3 | 1 | [1,1,1] [1,1,1] . 4 | ** 10 2 5 | 6 | [2] [5] . 5 | ** 14 2 7 | 8 | [2] [7] . 6 | 15 3 5 | 3 | [1,0] [1,2] . 7 | 21 3 7 | 3 | [1,0] [2,1] . 8 | ** 22 2 11 | 12 | [2] [11] . 9 | 25 5 5 | 1 | [1]^5 [1]^5 . 10 | ** 26 2 13 | 14 | [2] [13] . 11 | ** 33 3 11 | 12 | [3] [11] . 12 | ** 34 2 17 | 18 | [2] [17] . 13 | 35 5 7 | 2 | [1,0,1] [1,1,1] . 14 | ** 38 2 19 | 20 | [2] [19] . 15 | ** 39 3 13 | 14 | [3] [13] . 16 | ** 46 2 23 | 24 | [2] [23] . 17 | 49 7 7 | 1 | [1]^7 [1]^7 . 18 | ** 51 3 17 | 18 | [3] [17] . 19 | 55 5 11 | 4 | [1,1] [2,3] . 20 | ** 57 3 19 | 20 | [3] [19] . 21 | ** 58 2 29 | 30 | [2] [29] . 22 | ** 62 2 31 | 32 | [2] [31] . 23 | 65 5 13 | 4 | [1,1] [3,1] . 24 | ** 69 3 23 | 24 | [3] [23] . 25 | ** 74 2 37 | 38 | [2] [37] where p = A084126(n) and q = A084127(n), semiprimes marked with ** indicate terms of A138511, i.e. b = q + 1.
import Data.List (genericIndex, unfoldr); import Data.Tuple (swap) import Data.Maybe (mapMaybe) a138510 n = genericIndex a138510_list (n - 1) a138510_list = mapMaybe f [1..] where f x | a010051' q == 0 = Nothing | q == p = Just 1 | otherwise = Just $ head [b | b <- [2..], length (d b p) == length (d b q)] where q = div x p; p = a020639 x d b = unfoldr (\z -> if z == 0 then Nothing else Just $ swap $ divMod z b) -- Reinhard Zumkeller, Dec 16 2014
(define (A138510 n) (A251725 (A001358 n))) ;; Antti Karttunen, Dec 16 2014
a088381 n = a088381_list !! (n-1) a088381_list = filter f [1..] where f x = p ^ 2 < div x p where p = a020639 x -- Reinhard Zumkeller, Jan 08 2015
filter:= n -> n > min(numtheory:-factorset(n))^3: select(filter, [$2..200]); # Robert Israel, Aug 11 2020
isok(n) = n > factor(n)[1,1]^3; \\ Michel Marcus, Jan 08 2015
Let S = {k <= n : rad(k) | n} = row n of A162306 a(1) = 0 since S = {1} has 0 prime powers. a(2) = 1 since S = {1, [2]} has 1 prime power. a(4) = 2 since S = {1, [2, 4]} has 2 prime powers. a(6) = 3 since S = {1, [2, 3, 4], 6} has 3 prime powers. a(10) = 4 since S = {1, [2, 4, 5, 8], 10} has 4 prime powers. a(12) = 5 since S = {1, [2, 3, 4], 6, [8, 9], 12} has 5 prime powers, etc.
a := n -> add(ilog[p](n), p in NumberTheory:-PrimeFactors(n)): seq(a(n), n = 1..92); # Peter Luschny, Jun 20 2024
{0}~Join~Table[Total@ Map[Floor@ Log[#, n] &, FactorInteger[n][[All, 1]]], {n, 2, 120}]
a(n) = if (n==1, 0, my(f=factor(n)[,1]); sum(k=1, #f, logint(n, f[k]))); \\ Michel Marcus, Jun 20 2024
from sympy import integer_log, primefactors def A361373(n): return sum(integer_log(n,p)[0] for p in primefactors(n)) # Chai Wah Wu, Sep 20 2024
Comments