A080257 Numbers having at least two distinct or a total of at least three prime factors.
6, 8, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100
Offset: 1
Examples
8=2*2*2 and 10=2*5 are terms; 4=2*2 is not a term. From _Gus Wiseman_, Jul 03 2019: (Start) The sequence of terms together with their prime indices begins: 6: {1,2} 8: {1,1,1} 10: {1,3} 12: {1,1,2} 14: {1,4} 15: {2,3} 16: {1,1,1,1} 18: {1,2,2} 20: {1,1,3} 21: {2,4} 22: {1,5} 24: {1,1,1,2} 26: {1,6} 27: {2,2,2} 28: {1,1,4} 30: {1,2,3} 32: {1,1,1,1,1} (End)
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Haskell
a080257 n = a080257_list !! (n-1) a080257_list = m a024619_list a033942_list where m xs'@(x:xs) ys'@(y:ys) | x < y = x : m xs ys' | x == y = x : m xs ys | x > y = y : m xs' ys -- Reinhard Zumkeller, Apr 02 2012
-
Mathematica
Select[Range[100],PrimeNu[#]>1||PrimeOmega[#]>2&] (* Harvey P. Dale, Jul 23 2013 *)
-
PARI
is(n)=omega(n)>1 || isprimepower(n)>2
-
PARI
is(n)=my(k=isprimepower(n)); if(k, k>2, !isprime(n)) \\ Charles R Greathouse IV, Jan 23 2025
Formula
a(n) = n + O(n/log n). - Charles R Greathouse IV, Sep 14 2015
Extensions
Definition clarified by Harvey P. Dale, Jul 23 2013
Comments