cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A285726 a(1) = a(2) = 0; for n > 2, a(n) = A252736(n) - (1-A000035(n)).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 2, 0, 1, 0, 1, 1, 0, 0, 2, 1, 0, 2, 1, 0, 1, 0, 3, 1, 0, 1, 2, 0, 0, 1, 2, 0, 1, 0, 1, 2, 0, 0, 3, 1, 1, 1, 1, 0, 2, 1, 2, 1, 0, 0, 2, 0, 0, 2, 4, 1, 1, 0, 1, 1, 1, 0, 3, 0, 0, 2, 1, 1, 1, 0, 3, 3, 0, 0, 2, 1, 0, 1, 2, 0, 2, 1, 1, 1, 0, 1, 4, 0, 1, 2, 2, 0, 1, 0, 2, 2, 0, 0, 3, 0, 1, 1, 3, 0, 1, 1, 1, 2, 0, 1, 3
Offset: 1

Views

Author

Antti Karttunen, Apr 25 2017

Keywords

Comments

Consider the binary tree illustrated in A005940: If we start from any n, computing successive iterations of A252463 until 1 is reached (i.e., we are traversing level by level towards the root of the tree, starting from that vertex of the tree where n is located), then a(n) gives the number of even numbers > 2 encountered on the path after the initial n, that is, both the penultimate 2 and also the starting n (if it was even) are excluded from the count.

Crossrefs

Programs

Formula

a(1) = a(2) = 0; for n > 2, a(n) = A252736(n) - (1-A000035(n)).

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Views

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014

A252464 a(1) = 0, a(2n) = 1 + a(n), a(2n+1) = 1 + a(A064989(2n+1)); also binary width of terms of A156552 and A243071.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 3, 4, 5, 4, 6, 5, 4, 4, 7, 4, 8, 5, 5, 6, 9, 5, 4, 7, 4, 6, 10, 5, 11, 5, 6, 8, 5, 5, 12, 9, 7, 6, 13, 6, 14, 7, 5, 10, 15, 6, 5, 5, 8, 8, 16, 5, 6, 7, 9, 11, 17, 6, 18, 12, 6, 6, 7, 7, 19, 9, 10, 6, 20, 6, 21, 13, 5, 10, 6, 8, 22, 7, 5, 14, 23, 7, 8, 15, 11, 8, 24, 6, 7, 11, 12, 16, 9, 7, 25, 6, 7, 6, 26, 9, 27
Offset: 1

Views

Author

Antti Karttunen, Dec 20 2014

Keywords

Comments

a(n) tells how many iterations of A252463 are needed before 1 is reached, i.e., the distance of n from 1 in binary trees like A005940 and A163511.
Similarly for A253553 in trees A253563 and A253565. - Antti Karttunen, Apr 14 2019

Examples

			From _Gus Wiseman_, Apr 02 2019: (Start)
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so a(n) is the size of the inner lining of the integer partition with Heinz number n, which is also the size of the largest hook of the same partition. For example, the partition with Heinz number 715 is (6,5,3), with diagram
  o o o o o o
  o o o o o
  o o o
which has inner lining
          o o
      o o o
  o o o
and largest hook
  o o o o o o
  o
  o
both of which have size 8, so a(715) = 8.
(End)
		

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,1,PrimeOmega[n]+PrimePi[FactorInteger[n][[-1,1]]]]-1,{n,100}] (* Gus Wiseman, Apr 02 2019 *)
  • PARI
    A061395(n) = if(n>1, primepi(vecmax(factor(n)[, 1])), 0);
    A252464(n) = (bigomega(n) + A061395(n) - 1); \\ Antti Karttunen, Apr 14 2019
    
  • Python
    from sympy import primepi, primeomega, primefactors
    def A252464(n): return primeomega(n)+primepi(max(primefactors(n)))-1 if n>1 else 0 # Chai Wah Wu, Jul 17 2023

Formula

a(1) = 0; for n > 1: a(n) = 1 + a(A252463(n)).
a(n) = A029837(1+A243071(n)). [a(n) = binary width of terms of A243071.]
a(n) = A029837(A005941(n)) = A029837(1+A156552(n)). [Also binary width of terms of A156552.]
Other identities. For all n >= 1:
a(A000040(n)) = n.
a(A001248(n)) = n+1.
a(A030078(n)) = n+2.
And in general, a(prime(n)^k) = n+k-1.
a(A000079(n)) = n. [I.e., a(2^n) = n.]
For all n >= 2:
a(n) = A001222(n) + A061395(n) - 1 = A001222(n) + A252735(n) = A061395(n) + A252736(n) = 1 + A252735(n) + A252736(n).
a(n) = A325134(n) - 1. - Gus Wiseman, Apr 02 2019
From Antti Karttunen, Apr 14 2019: (Start)
a(1) = 0; for n > 1: a(n) = 1 + a(A253553(n)).
a(n) = A001221(n) + A297167(n) = A297113(n) + A297155(n).
(End).

A252735 a(1) = 0; for n > 1: a(2n) = a(n), a(2n+1) = 1 + a(A064989(n)).

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 3, 0, 1, 2, 4, 1, 5, 3, 2, 0, 6, 1, 7, 2, 3, 4, 8, 1, 2, 5, 1, 3, 9, 2, 10, 0, 4, 6, 3, 1, 11, 7, 5, 2, 12, 3, 13, 4, 2, 8, 14, 1, 3, 2, 6, 5, 15, 1, 4, 3, 7, 9, 16, 2, 17, 10, 3, 0, 5, 4, 18, 6, 8, 3, 19, 1, 20, 11, 2, 7, 4, 5, 21, 2, 1, 12, 22, 3, 6, 13, 9, 4, 23, 2, 5, 8, 10, 14, 7, 1, 24, 3, 4, 2, 25, 6, 26, 5, 3, 15, 27, 1
Offset: 1

Views

Author

Antti Karttunen, Dec 21 2014

Keywords

Comments

Consider the binary tree illustrated in A005940: If we start from any n, computing successive iterations of A252463 until 1 is reached (i.e., we are traversing level by level towards the root of the tree, starting from that vertex of the tree where n is located at), a(n) gives the number of odd numbers > 1 encountered on the path (i.e., excluding the final 1 from the count but including the starting n if it was odd).

Crossrefs

Essentially one less than A061395.
Cf. also A246369.

Programs

Formula

a(1) = 0; for n > 1: a(2n) = a(n), a(2n+1) = 1 + a(A064989(n)).
a(n) = A080791(A156552(n)). [Number of nonleading 0-bits in A156552(n).]
Other identities:
For all n >= 2:
a(n) = A061395(n) - 1.
a(n) = A000120(A243071(n)) - 1. [One less than the binary weight of A243071(n).]
a(n) = A252464(n) - A252736(n) - 1.

A253559 a(1) = 0; for n>1: a(n) = A253557(n) - 1.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 2, 0, 1, 1, 3, 0, 2, 0, 2, 2, 1, 0, 3, 1, 1, 1, 2, 0, 2, 0, 4, 2, 1, 1, 3, 0, 1, 1, 3, 0, 3, 0, 2, 3, 1, 0, 4, 1, 2, 2, 2, 0, 2, 2, 3, 2, 1, 0, 3, 0, 1, 1, 5, 1, 3, 0, 2, 3, 2, 0, 4, 0, 1, 1, 2, 1, 2, 0, 4, 2, 1, 0, 4, 2, 1, 2, 3, 0, 4, 2, 2, 4, 1, 1, 5, 0, 2, 1, 3, 0, 3, 0, 3, 3, 1, 0, 3, 0, 3, 1, 4, 0, 3, 3, 2, 3, 1, 1, 4, 1, 1, 3, 2, 2, 2, 0, 6
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2015

Keywords

Comments

Consider the binary trees illustrated in A252753 and A252755: If we start from any n, computing successive iterations of A253554 until 1 is reached (i.e., we are traversing level by level towards the root of the tree, starting from that vertex of the tree where n is located), a(n) gives the number of even numbers > 2 encountered on the path (i.e., excluding the 2 from the count but including the starting n if it was even).

Crossrefs

Essentially, one less than A253557.
A008578 gives the positions of zeros.
Differs from A252736 for the first time at n=21, where a(21) = 2, while A252736(21) = 1.

Programs

Formula

a(n) = A080791(A252756(n)). [Number of nonleading 0-bits in A252756(n).]
a(1) = 0; for n>1: a(n) = A253557(n) - 1.
Other identities. For all n >= 2:
a(n) = A000120(A252754(n)) - 1. [One less than the binary weight of A252754(n).]
a(n) = A253555(n) - A253558(n).

A355523 Number of distinct differences between adjacent prime indices of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 2, 1, 1, 1, 2, 0, 1, 0, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 2, 0, 2, 2, 1, 0, 2, 1, 2, 1, 2, 0, 2, 1, 2, 1, 1, 0, 2, 0, 1, 2, 1, 1, 2, 0, 2, 1, 2, 0, 2, 0, 1, 2, 2, 1, 2, 0, 2, 1, 1, 0, 3, 1, 1, 1, 2, 0, 2, 1, 2, 1, 1, 1, 2, 0, 2, 2, 2, 0, 2, 0, 2, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 10 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			For example, the prime indices of 22770 are {1,2,2,3,5,9}, with differences (1,0,1,2,4), so a(22770) = 4.
		

Crossrefs

Crossrefs found in the link are not repeated here.
Counting m such that A056239(m) = n and a(m) = k gives A279945.
With multiplicity we have A252736(n) = A001222(n) - 1.
The maximal difference is A286470, minimal A355524.
A008578 gives the positions of 0's.
A287352 lists differences between 0-prepended prime indices.
A355534 lists augmented differences between prime indices.
A355536 lists differences between prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Union[Differences[primeMS[n]]]],{n,1000}]
  • PARI
    A355523(n) = if(1==n, 0, my(pis = apply(primepi,factor(n)[,1]), difs = vector(#pis-1, i, pis[i+1]-pis[i])); (#Set(difs)+!issquarefree(n))); \\ Antti Karttunen, Jan 20 2025

Extensions

Data section extended to a(105) by Antti Karttunen, Jan 20 2025

A386578 Irregular triangle read by rows where T(n,k) is the number of permutations of row n of A305936 (a multiset whose multiplicities are the prime indices of n) with k adjacent equal parts.

Original entry on oeis.org

1, 0, 1, 2, 0, 0, 0, 1, 1, 2, 0, 0, 0, 0, 1, 6, 0, 0, 2, 2, 2, 0, 0, 2, 2, 0, 0, 0, 0, 0, 1, 6, 6, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 3, 2, 0, 1, 4, 3, 2, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 12, 12, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 12, 6, 0, 0, 0, 3, 6, 4, 2, 0
Offset: 2

Views

Author

Gus Wiseman, Aug 04 2025

Keywords

Comments

Row 1 is empty, so offset is 2.
Same as A386579 with rows reversed.
This multiset (row n of A305936) is generally not the same as the multiset of prime indices of n. For example, the prime indices of 12 are {1,1,2}, while a multiset whose multiplicities are {1,1,2} is {1,1,2,3}.

Examples

			Row n = 21 counts the following permutations:
  .  112121  111212  111221  111122  .
     121121  112112  112211  221111
     121211  121112  122111
             211121  211112
             211211
             212111
Triangle begins
   .
   1
   0  1
   2  0
   0  0  1
   1  2  0
   0  0  0  1
   6  0  0
   2  2  2  0
   0  2  2  0
   0  0  0  0  1
   6  6  0  0
   0  0  0  0  0  1
   0  0  3  2  0
   1  4  3  2  0
  24  0  0  0
   0  0  0  0  0  0  1
  12 12  6  0  0
   0  0  0  0  0  0  0  1
   2 12  6  0  0
   0  3  6  4  2  0
		

Crossrefs

Column k = last is A010051.
Row lengths are A056239.
Initial zeros are counted by A252736 = A001222 - 1.
Row sums are A318762.
Column k = 0 is A335125.
For prime indices we have A386577.
Reversing all rows gives A386579.
A003242 and A335452 count anti-runs, ranks A333489, patterns A005649.
A025065(n - 2) counts partitions of inseparable type, ranks A335126, sums of A386586.
A124762 gives inseparability of standard compositions, separability A333382.
A305936 is a multiset whose multiplicities are the prime indices of n.
A325534 counts separable multisets, ranks A335433, sums of A386583.
A325535 counts inseparable multisets, ranks A335448, sums of A386584.
A336106 counts partitions of separable type, ranks A335127, sums of A386585.

Programs

  • Mathematica
    nrmptn[n_]:=Join@@MapIndexed[Table[#2[[1]],{#1}]&,If[n==1,{},Flatten[Cases[FactorInteger[n]//Reverse,{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aqt[c_,x_]:=Select[Permutations[c],Function[q,Length[Select[Range[Length[q]-1],q[[#]]==q[[#+1]]&]]==x]];
    Table[Table[Length[aqt[nrmptn[n],k]],{k,0,Length[nrmptn[n]]-1}],{n,30}]
Showing 1-7 of 7 results.