cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A253555 a(1) = 0, a(2n) = 1 + a(n), a(2n+1) = 1 + a(A250470(2n+1)); also binary width of terms of A252754 and A252756.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 4, 3, 3, 4, 5, 4, 6, 5, 4, 4, 7, 4, 8, 5, 4, 6, 9, 5, 4, 7, 5, 6, 10, 5, 11, 5, 5, 8, 5, 5, 12, 9, 6, 6, 13, 5, 14, 7, 5, 10, 15, 6, 5, 5, 5, 8, 16, 6, 5, 7, 6, 11, 17, 6, 18, 12, 7, 6, 6, 6, 19, 9, 6, 6, 20, 6, 21, 13, 8, 10, 6, 7, 22, 7, 7, 14, 23, 6, 6, 15, 6, 8, 24, 6, 6, 11, 6, 16, 7, 7, 25, 6, 9, 6
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2015

Keywords

Comments

a(n) tells how many iterations of A253554 are needed before 1 is reached, i.e., the distance of n from 1 in binary trees like A252753 and A252755.

Crossrefs

Differs from A252464 for the first time at n=21, where a(21) = 4, while A252463(21) = 5.

Formula

a(1) = 0; for n > 1: a(n) = 1 + a(A253554(n)).
a(n) = A029837(1+A252754(n)) = A029837(1+A252756(n)).
a(n) = A253556(n) + A253557(n).
Other identities.
For all n >= 1:
a(A000079(n)) = n. [I.e., a(2^n) = n.]
a(A000040(n)) = n.
a(A001248(n)) = n+1.
For n >= 2, a(n) = A253558(n) + A253559(n).

A286556 Permutation of nonnegative integers: a(n) = A006068(A252754(n)).

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 15, 5, 4, 14, 31, 13, 63, 30, 12, 10, 127, 9, 255, 29, 11, 62, 511, 26, 8, 126, 28, 61, 1023, 25, 2047, 21, 27, 254, 24, 18, 4095, 510, 60, 58, 8191, 22, 16383, 125, 20, 1022, 32767, 53, 16, 17, 19, 253, 65535, 57, 23, 122, 59, 2046, 131071, 50, 262143, 4094, 124, 42, 56, 54, 524287, 509, 52, 49, 1048575, 37
Offset: 1

Views

Author

Antti Karttunen, May 13 2017

Keywords

Comments

Note the indexing: the domain starts from one, but the range includes also zero.

Crossrefs

Inverse: A286555.
Differs from similarly constructed A243354 for the first time at n=21, where a(21) = 11, while A243354(21) = 28.

Programs

Formula

a(n) = A006068(A252754(n)).

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Views

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014

A253557 a(1) = 0; after which, a(2n) = 1 + a(n), a(2n+1) = a(A268674(2n+1)).

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 1, 2, 2, 4, 1, 3, 1, 3, 3, 2, 1, 4, 2, 2, 2, 3, 1, 3, 1, 5, 3, 2, 2, 4, 1, 2, 2, 4, 1, 4, 1, 3, 4, 2, 1, 5, 2, 3, 3, 3, 1, 3, 3, 4, 3, 2, 1, 4, 1, 2, 2, 6, 2, 4, 1, 3, 4, 3, 1, 5, 1, 2, 2, 3, 2, 3, 1, 5, 3, 2, 1, 5, 3, 2, 3, 4, 1, 5, 3, 3, 5, 2, 2, 6, 1, 3, 2, 4, 1, 4, 1, 4, 4, 2, 1, 4, 1, 4, 2, 5, 1
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2015

Keywords

Comments

Consider the binary trees illustrated in A252753 and A252755: If we start from any n, computing successive iterations of A253554 until 1 is reached (i.e., we are traversing level by level towards the root of the tree, starting from that vertex of the tree where n is located), a(n) gives the number of even numbers encountered on the path (i.e., including both 2 and the starting n if it was even).
This is bigomega (A001222) analog for nonstandard factorization based on the sieve of Eratosthenes (A083221). See A302041 for an omega-analog. - Antti Karttunen, Mar 31 2018

Crossrefs

Essentially, one more than A253559.
Primes, A000040, gives the positions of ones.
Differs from A001222 for the first time at n=21, where a(21) = 3, while A001222(21) = 2.

Programs

Formula

a(1) = 0; after which, a(2n) = 1 + a(n), a(2n+1) = a(A268674(2n+1)).
a(n) = A253555(n) - A253556(n).
a(n) = A000120(A252754(n)). [Binary weight of A252754(n).]
Other identities.
For all n >= 0:
a(2^n) = n.
For all n >= 2:
a(n) = A080791(A252756(n)) + 1. [One more than the number of nonleading 0-bits in A252756(n).]
From Antti Karttunen, Apr 01 2018: (Start)
a(1) = 0; for n > 1, a(n) = 1 + a(A302042(n)).
a(n) = A001222(A250246(n)).
(End)

Extensions

Definition (formula) corrected by Antti Karttunen, Mar 31 2018

A252753 Tree of Eratosthenes: a(0) = 1, a(1) = 2; after which, a(2n) = A250469(a(n)), a(2n+1) = 2 * a(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 25, 18, 21, 16, 11, 14, 27, 20, 35, 30, 33, 24, 49, 50, 51, 36, 55, 42, 45, 32, 13, 22, 39, 28, 65, 54, 57, 40, 77, 70, 87, 60, 85, 66, 69, 48, 121, 98, 147, 100, 125, 102, 105, 72, 91, 110, 123, 84, 115, 90, 93, 64, 17, 26, 63, 44, 95, 78, 81, 56, 119, 130, 159, 108, 145, 114, 117, 80
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2015

Keywords

Comments

This sequence can be represented as a binary tree. Each child to the left is obtained by applying A250469 to the parent, and each child to the right is obtained by doubling the parent:
1
|
...................2...................
3 4
5......../ \........6 9......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 10 15 12 25 18 21 16
11 14 27 20 35 30 33 24 49 50 51 36 55 42 45 32
etc.
Sequence A252755 is the mirror image of the same tree. A253555(n) gives the distance of n from 1 in both trees.

Crossrefs

Inverse: A252754.
Row sums: A253787, products: A253788.
Fixed points of a(n-1): A253789.
Similar permutations: A005940, A252755, A054429, A250245.

Programs

  • Mathematica
    (* b = A250469 *)
    b[1] = 1; b[n_] := If[PrimeQ[n], NextPrime[n], m1 = p1 = FactorInteger[n][[ 1, 1]]; For[k1 = 1, m1 <= n, m1 += p1; If[m1 == n, Break[]]; If[ FactorInteger[m1][[1, 1]] == p1, k1++]]; m2 = p2 = NextPrime[p1]; For[k2 = 1, True, m2 += p2, If[FactorInteger[m2][[1, 1]] == p2, k2++]; If[k1+2 == k2, Return[m2]]]];
    a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ[n], b[a[n/2]], 2 a[(n-1)/2]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 08 2016 *)

Formula

a(0) = 1, a(1) = 2; after which, a(2n) = A250469(a(n)), a(2n+1) = 2 * a(n).
As a composition of related permutations:
a(n) = A252755(A054429(n)).
a(n) = A250245(A005940(1+n)).
Other identities. For all n >= 1:
A055396(a(n)) = A001511(n). [A005940 has the same property.]
a(A003945(n)) = A001248(n) for n>=1. - Peter Luschny, Jan 13 2015

A252756 Permutation of nonnegative integers: a(1) = 0, a(2) = 1, a(2n) = 2*a(n), a(2n+1) = 1 + 2*a(A250470(2n+1)).

Original entry on oeis.org

0, 1, 3, 2, 7, 6, 15, 4, 5, 14, 31, 12, 63, 30, 13, 8, 127, 10, 255, 28, 9, 62, 511, 24, 11, 126, 29, 60, 1023, 26, 2047, 16, 25, 254, 27, 20, 4095, 510, 61, 56, 8191, 18, 16383, 124, 17, 1022, 32767, 48, 23, 22, 21, 252, 65535, 58, 19, 120, 57, 2046, 131071, 52, 262143, 4094, 125, 32, 59, 50, 524287, 508, 49, 54, 1048575, 40
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2015

Keywords

Crossrefs

Inverse: A252755.
Similar permutations: A243071, A252754, A054429, A250246.
Cf. also A250470, A253556 - A253559.
Differs from A243071 for the first time at n=21, where a(21) = 9, while A243071(21) = 29.

Formula

a(1) = 0, a(2) = 1, a(2n) = 2*a(n), a(2n+1) = 1 + 2*a(A250470(2n+1)).
As a composition of related permutations:
a(n) = A054429(A252754(n)).
a(n) = A243071(A250246(n)).

A302041 An omega analog for a nonstandard factorization based on the sieve of Eratosthenes (A083221).

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 1, 2, 3, 1, 2, 2, 3, 1, 2, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 1, 2, 2, 2, 3, 2, 1, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 3, 1, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Mar 31 2018

Keywords

Crossrefs

Cf. A302040 (positions of terms < 2).
Cf. A253557 (a similar analog for bigomega), A302050, A302051, A302052, A302039, A302055 (other analogs).
Differs from A302031 for the first time at n=59, where a(59) = 1, while A302031(59) = 2.

Programs

  • PARI
    \\ Assuming A250469 and its inverse A268674 have been precomputed, then the following is reasonably fast:
    A302044(n) = if(1==n,n,my(k=0); while((n%2), n = A268674(n); k++); n = (n/2^valuation(n, 2)); while(k>0, n = A250469(n); k--); (n));
    A302041(n) = if(1==n, 0,1+A302041(A302044(n)));
    
  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A000265(n) = (n/2^valuation(n, 2));
    A302044(n) = { my(c = A000265(A078898(n))); if(1==c,1,my(p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p)); };
    A302041(n) = if(1==n, 0,1+A302041(A302044(n)));
    
  • PARI
    \\ Or, using also some of the code from above:
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A055396(n) = if(1==n,0,primepi(A020639(n)));
    A250246(n) = if(1==n,n,my(k = 2*A250246(A078898(n)), r = A055396(n)); if(1==r, k, while(r>1, k = A003961(k); r--); (k)));
    A302041(n) = omega(A250246(n));

Formula

a(1) = 0; for n > 1, a(n) = 1 + a(A302044(n)).
a(n) = A001221(A250246(n)).
a(n) = A069010(A252754(n)).

A302051 An analog of A000005 for nonstandard factorization based on the sieve of Eratosthenes (A083221).

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 6, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 5, 4, 2, 10, 3, 6, 6, 6, 2, 8, 4, 8, 6, 4, 2, 12, 2, 4, 4, 7, 4, 12, 2, 6, 8, 8, 2, 12, 2, 4, 4, 6, 4, 8, 2, 10, 6, 4, 2, 12, 6, 4, 8, 8, 2, 10, 4, 6, 6, 4, 4, 12, 2, 6, 4, 9, 2, 12, 2, 8, 9
Offset: 1

Views

Author

Antti Karttunen, Apr 01 2018

Keywords

Comments

See A302042, A302044 and A302045 for a description of the factorization process.

Crossrefs

Cf. A000005, A083221, A302042, A302044, A302045, A302052 (reduced modulo 2), A302053 (gives the positions of odd numbers).
Cf. also A253557, A302041, A302050, A302052, A302039, A302055 for other similar analogs.

Programs

  • PARI
    up_to = 65537;
    ordinal_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), pt); for(i=1, length(invec), if(mapisdefined(om,invec[i]), pt = mapget(om, invec[i]), pt = 0); outvec[i] = (1+pt); mapput(om,invec[i],(1+pt))); outvec; };
    A020639(n) = if(n>1, if(n>n=factor(n, 0)[1, 1], n, factor(n)[1, 1]), 1); \\ From A020639
    v078898 = ordinal_transform(vector(up_to,n,A020639(n)));
    A078898(n) = v078898[n];
    A000265(n) = (n/2^valuation(n, 2));
    A001511(n) = 1+valuation(n,2);
    A302045(n) = A001511(A078898(n));
    A302044(n) = { my(c = A000265(A078898(n))); if(1==c,1,my(p = prime(-1+primepi(A020639(n))+primepi(A020639(c))), d = A078898(c), k=0); while(d, k++; if((1==k)||(A020639(k)>=p),d -= 1)); (k*p)); };
    A302051(n) = if(1==n,n,(A302045(n)+1)*A302051(A302044(n)));
    
  • PARI
    \\ Or, using also some of the code from above:
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A055396(n) = if(1==n,0,primepi(A020639(n)));
    A250246(n) = if(1==n,n,my(k = 2*A250246(A078898(n)), r = A055396(n)); if(1==r, k, while(r>1, k = A003961(k); r--); (k)));
    A302051(n) = numdiv(A250246(n));

Formula

a(1) = 1, for n > 1, a(n) = (A302045(n)+1) * a(A302044(n)).
a(n) = A000005(A250246(n)).
a(n) = A106737(A252754(n)).

A269171 Permutation of natural numbers: a(1) = 1, a(2n) = 2*a(n), a(2n+1) = A269379(a(A268674(2n+1))).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 23, 20, 21, 22, 25, 24, 19, 26, 27, 28, 29, 30, 37, 32, 33, 34, 35, 36, 41, 46, 39, 40, 43, 42, 47, 44, 45, 50, 53, 48, 31, 38, 51, 52, 61, 54, 49, 56, 57, 58, 67, 60, 71, 74, 63, 64, 65, 66, 77, 68, 69, 70, 83, 72, 89, 82, 75, 92, 59, 78, 91, 80, 81, 86, 97, 84, 79, 94, 87, 88, 107, 90, 85, 100
Offset: 1

Views

Author

Antti Karttunen, Mar 03 2016

Keywords

Crossrefs

Inverse: A269172.
Related or similar permutations: A260741, A260742, A269355, A269357, A255421, A252754, A252756, A269385, A269387.
Cf. also A269393 (a(3n)/3) and A269395.
Differs from A255407 for the first time at n=38, where a(38) = 46, while A255407(38) = 38.

Formula

a(1) = 1, then after for even n, a(n) = 2*a(n/2), and for odd n, a(n) = A269379(a(A268674(n))).
a(1) = 1, for n > 1, a(n) = A255127(A055396(n), a(A078898(n))).
As a composition of other permutations:
a(n) = A269385(A252756(n)).
a(n) = A269387(A252754(n)).
Other identities. For all n >= 1:
A000035(a(n)) = A000035(n). [Preserves the parity of n.]
a(A008578(n)) = A003309(n). [Maps noncomposites to Ludic numbers.]

A269388 Permutation of natural numbers: a(1) = 0, after which, a(2n) = 1 + 2*a(n), a(2n+1) = 2 * a(A269380(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 12, 19, 14, 33, 128, 23, 256, 65, 18, 35, 512, 21, 24, 31, 22, 129, 20, 27, 1024, 25, 34, 39, 2048, 29, 4096, 67, 30, 257, 8192, 47, 28, 513, 26, 131, 16384, 37, 48, 71, 38, 1025, 40, 43, 32768, 49, 66, 63, 36, 45, 65536, 259, 46, 41, 131072, 55, 96, 2049, 130, 51, 262144, 69, 44
Offset: 1

Views

Author

Antti Karttunen, Mar 01 2016

Keywords

Comments

Note the indexing: Domain starts from 1, range from 0.

Crossrefs

Inverse: A269387.
Cf. A269380.
Related permutations: A260742, A269386, A269172.
Cf. also A252754, A269378.
Differs from A156552, A252754 and A246677(n-1) for the first time at n=19, which here a(19)=12, instead of 128.

Formula

a(1) = 0, after which, a(2n) = 1 + 2*a(n), a(2n+1) = 2 * a(A269380(n)).
As a composition of other permutations:
a(n) = A252754(A269172(n)).
a(n) = A269378(A260742(n)).
Showing 1-10 of 18 results. Next