cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253140 Smallest of three consecutive primes in arithmetic progression with common difference 24 and digit sum prime.

Original entry on oeis.org

89, 373, 773, 863, 1279, 2063, 2089, 2399, 2663, 2753, 3299, 4153, 4373, 5879, 6173, 6263, 6779, 7079, 7499, 7853, 9473, 10453, 11399, 12253, 12479, 14699, 16763, 19379, 21163, 21563, 25073, 29363, 32189, 33599, 40063, 41879, 42773, 50053, 50363, 52673, 56453
Offset: 1

Views

Author

K. D. Bajpai, Dec 27 2014

Keywords

Examples

			a(1) = 89: 89 + 24 = 113; 113 + 24 = 137; all three are prime. Their digit sums 8+9 = 17, 1+1+3 = 5 and 1+3+7 = 11 are also prime.
a(2) = 373: 373 + 24 = 397; 397 + 24 = 421; all three are prime. Their digit sums 3+7+3 = 13, 3+9+7 = 19 and 4+2+1 = 7 are also prime.
		

Crossrefs

Programs

  • Mathematica
    A253140 = {}; Do[d = 24; k = Prime[n]; k1 = k+d; k2 = k+2d; If[PrimeQ[k1] && PrimeQ[k2] && PrimeQ[Plus@@IntegerDigits[k]] && PrimeQ[Plus@@IntegerDigits[k1]] && PrimeQ[Plus@@IntegerDigits[k2]], AppendTo[A253140,k]], {n,20000}]; A253140
    tcpQ[n_]:=Module[{a=n+24,b=n+48},AllTrue[{a,b},PrimeQ]&&AllTrue[Total/@ (IntegerDigits/@{n,a,b}),PrimeQ]]; Select[Prime[Range[6000]],tcpQ] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Sep 16 2016 *)