A253195 Numbers congruent to 5 or 8 mod 9.
5, 8, 14, 17, 23, 26, 32, 35, 41, 44, 50, 53, 59, 62, 68, 71, 77, 80, 86, 89, 95, 98, 104, 107, 113, 116, 122, 125, 131, 134, 140, 143, 149, 152, 158, 161, 167, 170, 176, 179, 185, 188, 194, 197, 203, 206, 212, 215, 221, 224, 230, 233, 239, 242, 248, 251
Offset: 1
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
Magma
[n: n in [0..251] | n mod 9 in {5, 8}];
-
Mathematica
LinearRecurrence[{1, 1, -1}, {5, 8, 14}, 56] Select[Range[300],MemberQ[{5,8},Mod[#,9]]&] (* Harvey P. Dale, Mar 17 2020 *)
-
PARI
Vec(x*(5 + 3*x + x^2)/((1 + x)*(1 - x)^2) + O(x^80)) \\ Michel Marcus, Mar 25 2015
Formula
a(n) = a(n-1) + a(n-2) - a(n-3), n >= 4.
G.f.: x*(5 + 3*x + x^2)/((1 + x)*(1 - x)^2).
a(n) = a(n-2) + 9.
a(n) = 9*n - a(n-1) - 5.
a(n) = 4*n + 2*ceiling(n/2) - floor(n/2) - 1.
a(n) = (9*n - (3/2)*(1 + (- 1)^n) + 1)/2.
E.g.f.: 1 + ((18*x - 1)*exp(x) - 3*exp(-x))/4. - David Lovler, Sep 06 2022
Comments