cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253208 a(n) = 4^n + 3.

Original entry on oeis.org

4, 7, 19, 67, 259, 1027, 4099, 16387, 65539, 262147, 1048579, 4194307, 16777219, 67108867, 268435459, 1073741827, 4294967299, 17179869187, 68719476739, 274877906947, 1099511627779, 4398046511107, 17592186044419, 70368744177667, 281474976710659
Offset: 0

Views

Author

Vincenzo Librandi, Dec 29 2014

Keywords

Comments

Subsequence of A226807.

Crossrefs

Cf. Numbers of the form k^n+k-1: A000057 (k=2), A168607 (k=3), this sequence (k=4), A242329 (k=5), A253209 (k=6), A253210 (k=7), A253211 (k=8), A253212 (k=9), A253213 (k=10).

Programs

  • Magma
    [4^n+3: n in [0..30]];
    
  • Mathematica
    Table[4^n + 3, {n, 0, 30}] (* or *) CoefficientList[Series[(4 - 13 x) / ((1 - x) (1 - 4 x)), {x, 0, 40}], x]
  • PARI
    a(n)=4^n+3 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (4 - 13*x)/((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n > 1.
From Elmo R. Oliveira, Nov 14 2023: (Start)
a(n) = 4*a(n-1) - 9 with a(0) = 4.
E.g.f.: exp(4*x) + 3*exp(x). (End)

A327943 Numbers m that divide 6^m + 5.

Original entry on oeis.org

1, 11, 341, 186787, 8607491, 9791567, 11703131, 14320387, 50168819, 952168003, 71654478989, 1328490399527
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Sep 30 2019

Keywords

Comments

Conjecture: For k > 1, k^m == 1 - k (mod m) has infinitely many positive solutions.
Also includes 11834972807906571233 = 31*381773316384082943. - Robert Israel, Oct 03 2019
a(13) > 10^15. - Max Alekseyev, Nov 10 2022

Crossrefs

Solutions to k^m == 1-k (mod m): A006521 (k = 2), A015973 (k = 3), A327840 (k = 4), A123047 (k = 5), this sequence (k = 6).

Programs

  • Magma
    [1] cat [n: n in [1..10^8] | Modexp(6, n, n) + 5 eq n];
  • Mathematica
    Join[{1},Select[Range[98*10^5],PowerMod[6,#,#]==#-5&]] (* The program generates the first six terms of the sequence. To generate more, increase the Range constant but the program may take a long time to run. *) (* Harvey P. Dale, Feb 05 2022 *)

Extensions

a(11) from Giovanni Resta, Oct 02 2019
a(12) from Max Alekseyev, Nov 10 2022
Showing 1-2 of 2 results.