A242329
a(n) = 5^n + 4.
Original entry on oeis.org
5, 9, 29, 129, 629, 3129, 15629, 78129, 390629, 1953129, 9765629, 48828129, 244140629, 1220703129, 6103515629, 30517578129, 152587890629, 762939453129, 3814697265629, 19073486328129, 95367431640629, 476837158203129, 2384185791015629, 11920928955078129
Offset: 0
-
[5^n+4: n in [0..30]];
-
Table[5^n + 4, {n, 0, 30}]
LinearRecurrence[{6,-5},{5,9},30] (* Harvey P. Dale, Mar 15 2025 *)
A327840
Numbers m that divide 4^m + 3.
Original entry on oeis.org
1, 7, 16387, 4509253, 24265177, 42673920001, 103949349763, 12939780075073
Offset: 1
-
[1] cat [n: n in [1..10^8] | Modexp(4,n,n) + 3 eq n];
-
Select[Range[10^7], IntegerQ[(PowerMod[4, #, # ]+3)/# ]&] (* Metin Sariyar, Sep 28 2019 *)
-
is(n)=Mod(4,n)^n==-3 \\ Charles R Greathouse IV, Sep 29 2019
A340666
A(n,k) is derived from n by replacing each 0 in its binary representation with a string of k 0's; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
0, 0, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 4, 3, 1, 0, 1, 8, 3, 4, 3, 0, 1, 16, 3, 16, 5, 3, 0, 1, 32, 3, 64, 9, 6, 7, 0, 1, 64, 3, 256, 17, 12, 7, 1, 0, 1, 128, 3, 1024, 33, 24, 7, 8, 3, 0, 1, 256, 3, 4096, 65, 48, 7, 64, 9, 3, 0, 1, 512, 3, 16384, 129, 96, 7, 512, 33, 10, 7
Offset: 0
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 4, 8, 16, 32, 64, 128, 256, ...
3, 3, 3, 3, 3, 3, 3, 3, 3, ...
1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, ...
3, 5, 9, 17, 33, 65, 129, 257, 513, ...
3, 6, 12, 24, 48, 96, 192, 384, 768, ...
7, 7, 7, 7, 7, 7, 7, 7, 7, ...
1, 8, 64, 512, 4096, 32768, 262144, 2097152, 16777216, ...
...
Rows n=0..17, 19 give:
A000004,
A000012,
A000079,
A010701,
A000302,
A000051(k+1),
A007283,
A010727,
A001018,
A087289,
A007582(k+1),
A062709(k+2),
A164346,
A181565(k+1),
A005009,
A181404(k+3),
A001025,
A199493,
A253208(k+1).
-
A:= (n, k)-> Bits[Join](subs(0=[0$k][], Bits[Split](n))):
seq(seq(A(n, d-n), n=0..d), d=0..12);
# second Maple program:
A:= proc(n, k) option remember; `if`(n<2, n,
`if`(irem(n, 2, 'r')=1, A(r, k)*2+1, A(r, k)*2^k))
end:
seq(seq(A(n, d-n), n=0..d), d=0..12);
-
A[n_, k_] := FromDigits[IntegerDigits[n, 2] /. 0 -> Sequence @@ Table[0, {k}], 2];
Table[A[n, d-n], {d, 0, 12}, {n, 0, d}] // Flatten (* Jean-François Alcover, Feb 02 2021 *)
A253211
a(n) = 8^n + 7.
Original entry on oeis.org
8, 15, 71, 519, 4103, 32775, 262151, 2097159, 16777223, 134217735, 1073741831, 8589934599, 68719476743, 549755813895, 4398046511111, 35184372088839, 281474976710663, 2251799813685255, 18014398509481991, 144115188075855879, 1152921504606846983
Offset: 0
Cf. similar sequences listed in
A253208.
-
[8^n+7: n in [0..30]];
-
Table[8^n + 7, {n, 0, 40}]
8^Range[0,20]+7 (* or *) LinearRecurrence[{9,-8},{8,15},30] (* Harvey P. Dale, Feb 25 2024 *)
A253213
a(n) = 10^n + 9.
Original entry on oeis.org
10, 19, 109, 1009, 10009, 100009, 1000009, 10000009, 100000009, 1000000009, 10000000009, 100000000009, 1000000000009, 10000000000009, 100000000000009, 1000000000000009, 10000000000000009, 100000000000000009, 1000000000000000009, 10000000000000000009, 100000000000000000009
Offset: 0
Cf. similar sequences listed in
A253208.
-
[10^n+9: n in [0..30]];
-
Table[10^n + 9, {n, 0, 40}]
LinearRecurrence[{11,-10},{10,19},40] (* Harvey P. Dale, Jun 29 2018 *)
A253209
a(n) = 6^n + 5.
Original entry on oeis.org
6, 11, 41, 221, 1301, 7781, 46661, 279941, 1679621, 10077701, 60466181, 362797061, 2176782341, 13060694021, 78364164101, 470184984581, 2821109907461, 16926659444741, 101559956668421, 609359740010501, 3656158440062981, 21936950640377861, 131621703842267141
Offset: 0
Cf. similar sequences listed in
A253208.
A253210
a(n) = 7^n + 6.
Original entry on oeis.org
7, 13, 55, 349, 2407, 16813, 117655, 823549, 5764807, 40353613, 282475255, 1977326749, 13841287207, 96889010413, 678223072855, 4747561509949, 33232930569607, 232630513987213, 1628413597910455, 11398895185373149, 79792266297612007, 558545864083284013
Offset: 0
Cf. similar sequences listed in
A253208.
A253212
a(n) = 9^n + 8.
Original entry on oeis.org
9, 17, 89, 737, 6569, 59057, 531449, 4782977, 43046729, 387420497, 3486784409, 31381059617, 282429536489, 2541865828337, 22876792454969, 205891132094657, 1853020188851849, 16677181699666577, 150094635296999129, 1350851717672992097, 12157665459056928809
Offset: 0
Cf. similar sequences listed in
A253208.
-
[9^n+8: n in [0..30]];
-
Table[9^n + 8, {n, 0, 40}]
LinearRecurrence[{10,-9},{9,17},30] (* Harvey P. Dale, Jul 02 2021 *)
Showing 1-8 of 8 results.
Comments