cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253208 a(n) = 4^n + 3.

Original entry on oeis.org

4, 7, 19, 67, 259, 1027, 4099, 16387, 65539, 262147, 1048579, 4194307, 16777219, 67108867, 268435459, 1073741827, 4294967299, 17179869187, 68719476739, 274877906947, 1099511627779, 4398046511107, 17592186044419, 70368744177667, 281474976710659
Offset: 0

Views

Author

Vincenzo Librandi, Dec 29 2014

Keywords

Comments

Subsequence of A226807.

Crossrefs

Cf. Numbers of the form k^n+k-1: A000057 (k=2), A168607 (k=3), this sequence (k=4), A242329 (k=5), A253209 (k=6), A253210 (k=7), A253211 (k=8), A253212 (k=9), A253213 (k=10).

Programs

  • Magma
    [4^n+3: n in [0..30]];
    
  • Mathematica
    Table[4^n + 3, {n, 0, 30}] (* or *) CoefficientList[Series[(4 - 13 x) / ((1 - x) (1 - 4 x)), {x, 0, 40}], x]
  • PARI
    a(n)=4^n+3 \\ Charles R Greathouse IV, Oct 07 2015

Formula

G.f.: (4 - 13*x)/((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n > 1.
From Elmo R. Oliveira, Nov 14 2023: (Start)
a(n) = 4*a(n-1) - 9 with a(0) = 4.
E.g.f.: exp(4*x) + 3*exp(x). (End)

A328138 Numbers m that divide 9^m + 8.

Original entry on oeis.org

1, 17, 803, 1241, 20264753, 28214180783393, 228454543831049
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 04 2019

Keywords

Comments

Conjecture: For n > 1, k^n == 1-k (mod n) has an infinite number of positive solutions.
No term can be a multiple of 2, 3, 5, 7, or 13. Also 4879573990210017348077958628152400091281634488825721395187 is a term. - Giovanni Resta, Oct 07 2019
Also 6788776064693081883870036833 is a term. - Max Alekseyev, Dec 27 2024

Crossrefs

Subsequence of A008364.
Solutions to k^m == k-1 (mod m): 1 (k = 1), A006521 (k = 2), A015973 (k = 3), A327840 (k = 4), A123047 (k = 5), A327943 (k = 6), A328033 (k = 7), A327468 (k = 8), this sequence (k = 9).
Cf. A253212 (9^n + 8).

Programs

  • Magma
    [1] cat [n: n in [1..10^8] | Modexp(9, n, n) + 8 eq n];
    
  • PARI
    isok(n) = Mod(9, n)^n==-8; \\ Michel Marcus, Oct 05 2019

Formula

a(n) > 15n for large enough n. (Surely the sequence grows superlinearly, but I can't prove it.) - Charles R Greathouse IV, Dec 27 2024

Extensions

a(7) from Giovanni Resta confirmed and a(6) added by Max Alekseyev, Dec 27 2024
Showing 1-2 of 2 results.