A144360
Primes of the form 8^k + 7. Also, primes of the form 64^m + 7.
Original entry on oeis.org
71, 262151, 1073741831, 302231454903657293676551, 85070591730234615865843651857942052871, 23945242826029513411849172299223580994042798784118791, 25711008708143844408671393477458601640355247900524685364822023
Offset: 1
71 - 1 = 70 is the fourth triskaidecagonal number and seventh pentagonal number.
Cf.
A000040,
A000668,
A144231,
A144232,
A144233,
A144234,
A144236,
A144242,
A144245,
A144246,
A144247,
A144313.
A253208
a(n) = 4^n + 3.
Original entry on oeis.org
4, 7, 19, 67, 259, 1027, 4099, 16387, 65539, 262147, 1048579, 4194307, 16777219, 67108867, 268435459, 1073741827, 4294967299, 17179869187, 68719476739, 274877906947, 1099511627779, 4398046511107, 17592186044419, 70368744177667, 281474976710659
Offset: 0
-
[4^n+3: n in [0..30]];
-
Table[4^n + 3, {n, 0, 30}] (* or *) CoefficientList[Series[(4 - 13 x) / ((1 - x) (1 - 4 x)), {x, 0, 40}], x]
-
a(n)=4^n+3 \\ Charles R Greathouse IV, Oct 07 2015
A327468
Numbers m that divide 8^m + 7.
Original entry on oeis.org
1, 3, 5, 25, 519, 290502305, 821808425, 979288025, 982989263, 25783323897, 27771237541, 31045665345, 65130752425, 3708883906025, 15079242289703, 973336048301405
Offset: 1
-
[m: m in [1..7] | (8^m + 7) mod m eq 0] cat [m: m in [8..10^8] | Modexp(8, m, m) + 7 eq m]; // Jon E. Schoenfield, Oct 05 2019
-
isok(n) = Mod(8, n)^n==-7; \\ Michel Marcus, Oct 05 2019
Showing 1-3 of 3 results.
Comments