A253249 Number of nonempty chains in the divides relation on the divisors of n.
1, 3, 3, 7, 3, 11, 3, 15, 7, 11, 3, 31, 3, 11, 11, 31, 3, 31, 3, 31, 11, 11, 3, 79, 7, 11, 15, 31, 3, 51, 3, 63, 11, 11, 11, 103, 3, 11, 11, 79, 3, 51, 3, 31, 31, 11, 3, 191, 7, 31, 11, 31, 3, 79, 11, 79, 11, 11, 3, 175, 3, 11, 31, 127, 11, 51, 3, 31, 11, 51
Offset: 1
Keywords
Examples
a(10) = 11 because we have: {1}, {2}, {5}, {10}, {1|2}, {1|5}, {1|10}, {2|10}, {5|10}, {1|2|10}, {1|5|10}.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..20000
Programs
-
Maple
with(numtheory): b:= proc(n) option remember: 1+ `if`(n=1, 0, add(b(d), d=divisors(n) minus {n})) end: a:= n-> add(b(d), d=divisors(n)): seq(a(n), n=1..100); # Alois P. Heinz, Jun 04 2015
-
Mathematica
Table[Total[Table[Length[Select[Subsets[Divisors[n], {k}],Apply[And, Map[Apply[Divisible, #] &,Partition[Reverse[#], 2, 1]]] &]], {k, 1,PrimeOmega[n] + 1}]], {n, 1, 100}]
Formula
Dirichlet g.f.: zeta(s)^2*A(s) where A(s) is the Dirichlet g.f. for A074206. - Geoffrey Critzer, May 23 2018
Sum_{k=1..n} a(k) ~ -4*n^r / (r*Zeta'(r)), where r = A107311 = 1.728647238998183618135103... is the root of the equation zeta(r) = 2. - Vaclav Kotesovec, Jan 31 2019
a(n) = 4*A002033(n-1) - 1 for n > 1. - Geoffrey Critzer, Aug 19 2020
Comments