A253413 Number of n-bit legal circular binary words with maximal set of 1's.
1, 1, 2, 3, 6, 5, 5, 14, 14, 21, 27, 44, 57, 78, 114, 158, 222, 306, 437, 608, 851, 1193, 1674, 2346, 3281, 4605, 6450, 9039, 12662, 17748, 24870, 34844, 48830, 68423, 95882, 134349, 188265, 263810, 369666, 518001, 725859, 1017128, 1425261, 1997178, 2798582
Offset: 0
Examples
The only legal circular words with maximal set of 1's are 0 if n = 1; 01 & 10 if n = 2; 011, 101 & 110 if n = 3; 0011, 0101, 0110, 1001, 1010 & 1100 if n = 4; 01011, 01101, 10101, 10110 & 11010 if n = 5; and 010101, 011011, 101010, 101101 & 110110 if n = 6. From _Eric W. Weisstein_, Jul 24 2017 (Start) Minimal dominating sets of cycle graph C_n: C_1: {1} C_2: {{1}, {2}} C_3: {{1}, {2}, {3}} C_4: {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} C_5: {{1, 3}, {1, 4}, {2, 4}, {2, 5}, {3, 5}} C_6: {{1, 4}, {2, 5}, {3, 6}, {1, 3, 5}, {2, 4, 6}} (End)
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..2500 (terms n = 1..1000 from Colin Barker)
- Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, On a variant of Flory model, arXiv:2210.12411 [math.CO], 2022.
- M. L. Gargano, A. Weisenseel, J. Malerba and M. Lewinter, Discrete Renyi parking constants, 36th Southeastern Conf. on Combinatorics, Graph Theory, and Computing, Boca Raton, 2005, Congr. Numer. 176 (2005) 43-48.
- Eric Weisstein's World of Mathematics, Cycle Graph
- Eric Weisstein's World of Mathematics, Minimal Dominating Set
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,0,-1).
Programs
-
Mathematica
Join[{1}, Table[RootSum[1 - #^2 - #^3 - #^4 + #^6 &, #^n &], {n, 2, 20}]] (* Eric W. Weisstein, Jul 24 2017 *) Join[{1}, LinearRecurrence[{0, 1, 1, 1, 0, -1}, {0, 2, 3, 6, 5, 5}, {2, 20}]] (* Eric W. Weisstein, Jul 24 2017 *) CoefficientList[Series[(1 + 2 x + 2 x^2 + 3 x^3 - x^4 - 6 x^5 + x^6)/(1 - x^2 - x^3 - x^4 + x^6), {x, 0, 20}], x] (* Eric W. Weisstein, Jul 24 2017 *)
-
PARI
Vec(x*(1 + 2*x + 2*x^2 + 3*x^3 - x^4 - 6*x^5 + x^6) / (1 - x^2 - x^3 - x^4 + x^6) + O(x^100)) \\ Colin Barker, Jul 26 2017
-
Python
def A253413(n): if n > 1: c, fs = 0, '0'+str(n)+'b' for i in range(2**n): s = format(i,fs) s = s[-2:]+s+s[:2] for j in range(n): if s[j:j+4] == '0100' or s[j+1:j+5] == '0010' or s[j+1:j+4] == '000' or s[j+1:j+4] == '111': break else: c += 1 return c else: return 1 # Chai Wah Wu, Jan 02 2015
Formula
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-6) for n>7. - Chai Wah Wu, Jan 02 2015
G.f.: (1 + x + x^2 + x^3 + 2*x^4 - x^5 - 5*x^6 + x^7) / (1 - x^2 - x^3 - x^4 + x^6). - Paul D. Hanna, Jan 02 2015
Extensions
a(21)-a(28) from Chai Wah Wu, Jan 02 2015
More terms from Colin Barker, Jul 26 2017
a(0)=1 prepended by Alois P. Heinz, Oct 26 2022
Comments