cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Views

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014

A246278 Prime shift array: Square array read by antidiagonals: A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 27, 35, 49, 11, 12, 21, 125, 77, 121, 13, 14, 45, 55, 343, 143, 169, 17, 16, 33, 175, 91, 1331, 221, 289, 19, 18, 81, 65, 539, 187, 2197, 323, 361, 23, 20, 75, 625, 119, 1573, 247, 4913, 437, 529, 29, 22, 63, 245, 2401, 209, 2873, 391, 6859, 667, 841, 31
Offset: 2

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

The array is read by antidiagonals: A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
This array can be obtained by taking every second column from array A242378, starting from its column 2.
Permutation of natural numbers larger than 1.
The terms on row n are all divisible by n-th prime, A000040(n).
Each column is strictly growing, and the terms in the same column have the same prime signature.
A055396(n) gives the row number of row where n occurs,
and A246277(n) gives its column number, both starting from 1.
From Antti Karttunen, Jan 03 2015: (Start)
A252759(n) gives their sum minus one, i.e. the Manhattan distance of n from the top left corner.
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252752 gives the inverse permutation. See also A246276.
(End)

Examples

			The top left corner of the array:
   2,     4,     6,     8,    10,    12,    14,    16,    18, ...
   3,     9,    15,    27,    21,    45,    33,    81,    75, ...
   5,    25,    35,   125,    55,   175,    65,   625,   245, ...
   7,    49,    77,   343,    91,   539,   119,  2401,   847, ...
  11,   121,   143,  1331,   187,  1573,   209, 14641,  1859, ...
  13,   169,   221,  2197,   247,  2873,   299, 28561,  3757, ...
		

Crossrefs

First row: A005843 (the even numbers), from 2 onward.
Row 2: A249734, Row 3: A249827.
Column 1: A000040 (primes), Column 2: A001248 (squares of primes), Column 3: A006094 (products of two successive primes), Column 4: A030078 (cubes of primes).
Transpose: A246279.
Inverse permutation: A252752.
One more than A246275.
Arrays obtained by applying a particular function (given in parentheses) to the entries of this array. Cases where the columns grow monotonically are indicated with *: A249822 (A078898), A253551 (* A156552), A253561 (* A122111), A341605 (A017665), A341606 (A017666), A341607 (A006530 o A017666), A341608 (A341524), A341626 (A341526), A341627 (A341527), A341628 (A006530 o A341527), A342674 (A341530), A344027 (* A003415, arithmetic derivative), A355924 (A342671), A355925 (A009194), A355926 (A355442), A355927 (* sigma), A356155 (* A258851), A372562 (A252748), A372563 (A286385), A378979 (* deficiency, A033879), A379008 (* (probably), A294898), A379010 (* A000010, Euler phi), A379011 (* A083254).
Cf. A329050 (subtable).

Programs

  • Mathematica
    f[p_?PrimeQ] := f[p] = Prime[PrimePi@ p + 1]; f[1] = 1; f[n_] := f[n] = Times @@ (f[First@ #]^Last@ # &) /@ FactorInteger@ n; Block[{lim = 12}, Table[#[[n - k, k]], {n, 2, lim}, {k, n - 1, 1, -1}] &@ NestList[Map[f, #] &, Table[2 k, {k, lim}], lim]] // Flatten (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A003961 *)
  • Scheme
    (define (A246278 n) (if (<= n 1) n (A246278bi (A002260 (- n 1)) (A004736 (- n 1))))) ;; Square array starts with offset=2, and we have also tacitly defined a(1) = 1 here.
    (define (A246278bi row col) (if (= 1 row) (* 2 col) (A003961 (A246278bi (- row 1) col))))

Formula

A(1,col) = 2*col, and for row > 1, A(row,col) = A003961(A(row-1,col)).
As a composition of other similar sequences:
a(n) = A122111(A253561(n)).
a(n) = A249818(A083221(n)).
For all n >= 1, a(n+1) = A005940(1+A253551(n)).
A(n, k) = A341606(n, k) * A355925(n, k). - Antti Karttunen, Jul 22 2022

Extensions

Starting offset of the linear sequence changed from 1 to 2, without affecting the column and row indices by Antti Karttunen, Jan 03 2015

A135764 Distribute the natural numbers in columns based on the occurrence of "2" in each prime factorization; square array A(row,col) = 2^(row-1) * ((2*col)-1), read by descending antidiagonals.

Original entry on oeis.org

1, 3, 2, 5, 6, 4, 7, 10, 12, 8, 9, 14, 20, 24, 16, 11, 18, 28, 40, 48, 32, 13, 22, 36, 56, 80, 96, 64, 15, 26, 44, 72, 112, 160, 192, 128, 17, 30, 52, 88, 144, 224, 320, 384, 256, 19, 34, 60, 104, 176, 288, 448, 640, 768, 512, 21, 38, 68, 120, 208, 352, 576, 896, 1280, 1536, 1024, 23, 42, 76, 136, 240, 416, 704, 1152, 1792, 2560, 3072, 2048, 25, 46, 84, 152, 272, 480, 832, 1408, 2304, 3584, 5120, 6144, 4096, 27, 50, 92, 168, 304, 544, 960, 1664, 2816
Offset: 1

Views

Author

Alford Arnold, Nov 29 2007

Keywords

Comments

The array in A135764 is identical to the array in A054582 [up to the transposition and different indexing. - Clark Kimberling, Dec 03 2010; comment amended by Antti Karttunen, Feb 03 2015; please see the illustration in Example section].
The array gives a bijection between the natural numbers N and N^2. A more usual bijection is to take the natural numbers A000027 and write them in the usual OEIS square array format. However this bijection has the advantage that it can be formed by iterating the usual bijection between N and 2N. - Joshua Zucker, Nov 04 2011
The array can be used to determine the configurations of k-th Towers of Hanoi moves, by labeling odd row terms C,B,A,C,B,A,... and even row terms B,C,A,B,C,A,.... Then given k equal to or greater than term "a" in each n-th row, but less than the next row term, record the label A, B, or C for term "a". This denotes the peg position for the disc corresponding to the n-th row. For example, with k = 25, five discs are in motion since the binary for 25 = 11001, five bits. We find that 25 in row 5 is greater than 16 labeled C, but less than 48. Thus, disc 5 is on peg C. In the 4th row, 25 is greater than 24 (a C), but less than 40, so goes onto the C peg. Similarly, disc 3 is on A, 2 is on A, and disc 1 is on A. Thus, discs 2 and 3 are on peg A, while 1, 4, and 5 are on peg C. - Gary W. Adamson, Jun 22 2012
Shares with arrays A253551 and A254053 the property that A001511(n) = k for all terms n on row k and when going downward in each column, terms grow by doubling. - Antti Karttunen, Feb 03 2015
Let P be the infinite palindromic word having initial word 0 and midword sequence (1,2,3,4,...) = A000027. Row n of the array A135764 gives the positions of n-1 in S. ("Infinite palindromic word" is defined at A260390.) - Clark Kimberling, Aug 13 2015
The probability distribution series 1 = 2/3 + 4/15 + 16/255 + 256/65535 + ... + A001146(n-1)/A051179(n) governs the proportions of terms in A001511 from row n of the array. In A001511(1..15) there are ((2/3) * 15) = ten terms from row one of the array, ((4/15) * 15) = four terms from row two, and ((16/255) * 15) = one (rounded), giving one term from row three (a 4). - Gary W. Adamson, Dec 16 2021
From Gary W. Adamson, Dec 30 2021: (Start)
Subarrays representing the number of divisors of an integer can be mapped on the table. For 60, write the odd divisors on the top row: 1, 3, 5, 15. Since 60 has 12 divisors, let the left column equal 1, 2, 4, where 4 is the highest power of 2 dividing 60. Multiplying top row terms by left column terms, we get the result:
1 3 5 15
2 6 10 30
4 12 20 60. (End)

Examples

			The table begins
   1,  3,   5,   7,   9,  11,  13,  15,  17,  19,  21,  23, ...
   2,  6,  10,  14,  18,  22,  26,  30,  34,  38,  42,  46, ...
   4, 12,  20,  28,  36,  44,  52,  60,  68,  76,  84,  92, ...
   8, 24,  40,  56,  72,  88, 104, 120, 136, 152, 168, 184, ...
  16, 48,  80, 112, 144, 176, 208, 240, 272, 304, 336, 368, ...
  32, 96, 160, 224, 288, 352, 416, 480, 544, 608, 672, 736, ...
etc.
For n = 6, we have [A002260(6), A004736(6)] = [3, 1] (i.e., 6 corresponds to location 3,1 (row,col) in above table) and A(3,1) = A000079(3-1) * A005408(1-1) = 2^2 * 1 = 4.
For n = 13, we have [A002260(13), A004736(13)] = [3, 3] (13 corresponds to location 3,3 (row,col) in above table) and A(3,3) = A000079(3-1) * A005408(3-1) = 2^2 * 5 = 20.
For n = 23, we have [A002260(23), A004736(23)] = [2, 6] (23 corresponds to location 2,6) and A(2,6) = A000079(2-1) * A005408(6-1) = 2^1 * 11 = 22.
		

Crossrefs

Transpose: A054582.
Inverse permutation: A249725.
Column 1: A000079.
Row 1: A005408.
Cf. A001511 (row index), A003602 (column index, both one-based).
Related arrays: A135765, A253551, A254053, A254055.
Cf. also permutations A246675, A246676, A249741, A249811, A249812.
Cf. A260390.

Programs

  • Maple
    seq(seq(2^(j-1)*(2*(i-j)+1),j=1..i),i=1..20); # Robert Israel, Feb 03 2015
  • Mathematica
    f[n_] := Block[{i, j}, {1}~Join~Flatten@ Last@ Reap@ For[j = 1, j <= n, For[i = j, i > 0, Sow[2^(j - i - 1)*(2 i + 1)], i--], j++]]; f@ 10 (* Michael De Vlieger, Feb 03 2015 *)
  • PARI
    a(n) = {s = ceil((1 + sqrt(1 + 8*n)) / 2); r = n - binomial(s-1, 2) - 1;k = s - r - 2; 2^r * (2 * k + 1) } \\ David A. Corneth, Feb 05 2015
  • Scheme
    (define (A135764 n) (A135764bi (A002260 n) (A004736 n)))
    (define (A135764bi row col) (* (A000079 (- row 1)) (+ -1 col col)))
    ;; Antti Karttunen, Feb 03 2015
    

Formula

From Antti Karttunen, Feb 03 2015: (Start)
A(row, col) = 2^(row-1) * ((2*col)-1) = A000079(row-1) * A005408(col-1).
A(row,col) = A064989(A135765(row,A249746(col))).
A(row,col) = A(row+1,col)/2 [discarding the topmost row and halving the rest of terms gives the array back].
A(row,col) = A(row,col+1) - A000079(row) [discarding the leftmost column and subtracting 2^{row number} from the rest of terms gives the array back].
(End)
G.f.: ((2*x+1)*Sum_{i>=0} 2^i*x^(i*(i+1)/2) + 2*(1-2*x)*Sum_{i>=0} i*x^(i*(i+1)/2) + (1-6*x)*Sum_{i>=0} x^(i*(i+1)/2) - 1 - 2*x)*x/(1-2*x)^2. These sums are related to Jacobi theta functions. - Robert Israel, Feb 03 2015

Extensions

More terms from Sean A. Irvine, Nov 23 2010
Name amended and the illustration of array in the example section transposed by Antti Karttunen, Feb 03 2015

A254053 Square array: A(row,col) = 2^(row-1) * ((2*A249745(col))-1) = A064216(A254051(row,col)), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

1, 3, 2, 5, 6, 4, 7, 10, 12, 8, 11, 14, 20, 24, 16, 13, 22, 28, 40, 48, 32, 17, 26, 44, 56, 80, 96, 64, 19, 34, 52, 88, 112, 160, 192, 128, 9, 38, 68, 104, 176, 224, 320, 384, 256, 23, 18, 76, 136, 208, 352, 448, 640, 768, 512, 29, 46, 36, 152, 272, 416, 704, 896, 1280, 1536, 1024, 15, 58, 92, 72, 304, 544, 832, 1408, 1792, 2560, 3072, 2048, 31, 30
Offset: 1

Views

Author

Antti Karttunen, Jan 24 2015

Keywords

Comments

Shares with A135764 and A253551 the property that A001511(n) = k for all terms n on row k and when going downward in each column, terms grow by doubling.

Examples

			The top left corner of the array:
   1,  3,  5,   7,  11,  13,  17,  19,   9,  23,  29,  15,  31,  37,  41,  43,
   2,  6, 10,  14,  22,  26,  34,  38,  18,  46,  58,  30,  62,  74,  82,  86,
   4, 12, 20,  28,  44,  52,  68,  76,  36,  92, 116,  60, 124, 148, 164, 172,
   8, 24, 40,  56,  88, 104, 136, 152,  72, 184, 232, 120, 248, 296, 328, 344,
  16, 48, 80, 112, 176, 208, 272, 304, 144, 368, 464, 240, 496, 592, 656, 688,
...
		

Crossrefs

Inverse: A254054.
Similar or related permutations: A135764, A253551, A064216, A254051.

Formula

A(row,col) = A135764(row, A249745(col)). [Is otherwise the same array as A135764, but the column positions have been permuted by A249745.]
A(row,col) = 2^(row-1) * ((2*A249745(col))-1) = 2^(row-1) * A254050(col). [The above expands to this.]
a(n) = A064989(A135765(n)).
As a composition of other permutations:
a(n) = A064216(A254051(n)). [As an array: A(row,col) = A064216(A254051(row,col)).]

A253552 Permutation of natural numbers: a(n) = A252752(A005940(n+1)) - 1.

Original entry on oeis.org

1, 3, 2, 6, 4, 5, 7, 10, 11, 8, 16, 9, 37, 12, 29, 15, 22, 17, 46, 13, 106, 23, 67, 14, 301, 47, 154, 18, 352, 38, 121, 21, 56, 30, 92, 24, 211, 57, 191, 19, 596, 122, 436, 31, 991, 80, 277, 20, 1177, 327, 1226, 58, 2776, 173, 631, 25, 7751, 380, 1432, 48, 3241, 138, 497, 28, 79, 68, 232, 39, 529, 107, 379, 32, 1486, 233, 862, 69, 1954, 212, 781, 26
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Crossrefs

Inverse: A253551.
Differs from A249725 for the first time at n=13, where a(13) = 37, while A249725(13) = 22.
Cf. also A243499 & A253563 (for similar scatterplots).

Programs

Formula

a(n) = A252752(A005940(n+1)) - 1.

A265895 Square array: A(row,col) = A263273(A265345(row,col)) = 2^row * A263273(A265341(col)).

Original entry on oeis.org

1, 3, 2, 5, 6, 4, 7, 10, 12, 8, 9, 14, 20, 24, 16, 15, 18, 28, 40, 48, 32, 13, 30, 36, 56, 80, 96, 64, 11, 26, 60, 72, 112, 160, 192, 128, 17, 22, 52, 120, 144, 224, 320, 384, 256, 19, 34, 44, 104, 240, 288, 448, 640, 768, 512, 21, 38, 68, 88, 208, 480, 576, 896, 1280, 1536, 1024, 39, 42, 76, 136, 176, 416, 960, 1152, 1792, 2560, 3072, 2048
Offset: 1

Views

Author

Antti Karttunen, Dec 18 2015

Keywords

Comments

Square array A(row,col) is read by downwards antidiagonals as: A(0,0), A(0,1), A(1,0), A(0,2), A(1,1), A(2,0), A(0,3), A(1,2), A(2,1), A(3,0), ...
Shares with arrays A135764, A253551 and A254053 the property that odd terms are on the top row and when going downward in each column, terms grow by doubling.

Examples

			The top left corner of the array:
    1,   3,    5,    7,    9,   15,   13,   11,   17,   19,   21,   39,
    2,   6,   10,   14,   18,   30,   26,   22,   34,   38,   42,   78,
    4,  12,   20,   28,   36,   60,   52,   44,   68,   76,   84,  156,
    8,  24,   40,   56,   72,  120,  104,   88,  136,  152,  168,  312,
   16,  48,   80,  112,  144,  240,  208,  176,  272,  304,  336,  624,
   32,  96,  160,  224,  288,  480,  416,  352,  544,  608,  672, 1248,
   64, 192,  320,  448,  576,  960,  832,  704, 1088, 1216, 1344, 2496,
  128, 384,  640,  896, 1152, 1920, 1664, 1408, 2176, 2432, 2688, 4992,
  256, 768, 1280, 1792, 2304, 3840, 3328, 2816, 4352, 4864, 5376, 9984,
...
		

Crossrefs

Inverse permutation: A265896.
The top row: 1+(2*A263273(n)).
Differs from A135764 for the first time at n=16, where a(16) = 15, while A135764(16) = 11.

Formula

A(row,col) = A263273(A265345(row,col)).
A(row,col) = 2^row * A263273(A265341(col)).
Showing 1-6 of 6 results.