cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253637 Second partial sums of ninth powers (A001017).

Original entry on oeis.org

1, 514, 20710, 303050, 2538515, 14851676, 67518444, 254402940, 828707925, 2403012910, 6335265586, 15427298614, 35123831015, 75481410200, 154282348760, 301802764056, 567911055849, 1032378638010, 1819533917950, 3118689197890, 5212124524411, 8512829068724, 13614686274500, 21358351020500, 32916713032125, 49904578722726
Offset: 1

Views

Author

Luciano Ancora, Jan 07 2015

Keywords

Comments

The formula for the second partial sums of m-th powers is: b(n,m) = (n+1)*F(m) - F(m+1), where F(m) are the m-th Faulhaber's formulas.

Crossrefs

Cf. A001017.

Programs

  • GAP
    List([1..30], n-> n*(n+1)*(n+2)*(n^2+n-1)*(n^2+3*n+1)*(6*n^4+24*n^3 +5*n^2-38*n+ 25)/660 ); # G. C. Greubel, Aug 28 2019
  • Magma
    [n*(n+1)*(n+2)*(n^2+n-1)*(n^2+3*n+1)*(6*n^4+24*n^3+5*n^2-38*n+ 25)/660: n in [1..30]]; // G. C. Greubel, Aug 28 2019
    
  • Maple
    seq(n*(n+1)*(n+2)*(n^2+n-1)*(n^2+3*n+1)*(6*n^4+24*n^3+5*n^2-38*n+ 25)/660, n=1..30); # G. C. Greubel, Aug 28 2019
  • Mathematica
    CoefficientList[Series[(1 +502x +14608x^2 +88234x^3 +156190x^4 +88234x^5 +14608x^6 +502x^7 +x^8)/(1-x)^12, {x, 0, 30}], x] (* Vincenzo Librandi, Jan 19 2015 *)
    Nest[Accumulate,Range[30]^9,2] (* Harvey P. Dale, Apr 18 2021 *)
  • PARI
    a(n) = (6*n^11 + 66*n^10 + 275*n^9 + 495*n^8 + 198*n^7 - 462*n^6 - 330*n^5 + 330*n^4 + 231*n^3 - 99*n^2 - 50*n)/660; \\ Michel Marcus, Jan 08 2015
    
  • Sage
    [n*(n+1)*(n+2)*(n^2+n-1)*(n^2+3*n+1)*(6*n^4+24*n^3+5*n^2-38*n+ 25)/660 for n in (1..30)] # G. C. Greubel, Aug 28 2019
    

Formula

a(n) = n*(n+1)*(n+2)*(n^2+n-1)*(n^2+3*n+1)*(6*n^4 + 24*n^3 + 5*n^2 - 38*n + 25)/660.
a(n) = 2*a(n-1) - a(n-2) + n^9.
G.f.: x*(1 + 502*x + 14608*x^2 + 88234*x^3 + 156190*x^4 + 88234*x^5 + 14608*x^6 + 502*x^7 + x^8)/(1-x)^12. - Vincenzo Librandi, Jan 19 2015