cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A253684 Primes q with A253683(n) > q > A253685(n) such that (A253683(n), q, A253685(n)) forms a Wieferich triple.

Original entry on oeis.org

11, 23, 5, 1667, 73, 821, 18043, 2393, 20771, 2251, 1006003
Offset: 1

Views

Author

Felix Fröhlich, Jan 09 2015

Keywords

Comments

In analogy to a Wieferich pair, a set of three primes p, q, r can be called a 'Wieferich triple' if its members satisfy either of the following two sets of congruences:
p^(q-1) == 1 (mod q^2), q^(r-1) == 1 (mod r^2), r^(p-1) == 1 (mod p^2)
p^(r-1) == 1 (mod r^2), r^(q-1) == 1 (mod q^2), q^(p-1) == 1 (mod p^2)
a(9) must have A253683(n) > 121637. - Felix Fröhlich, Jun 18 2016
a(12) must have A253683(n) > 5*10^6. - Giovanni Resta, Jun 20 2016

Crossrefs

Programs

  • PARI
    forprime(p=1, , forprime(q=1, p, forprime(r=1, q, if((Mod(p, q^2)^(q-1)==1 && Mod(q, r^2)^(r-1)==1 && Mod(r, p^2)^(p-1)==1) || (Mod(p, r^2)^(r-1)==1 && Mod(r, q^2)^(q-1)==1 && Mod(q, p^2)^(p-1)==1), print1(q, ", ")))))

Extensions

a(8) from Felix Fröhlich, Jun 18 2016
Name edited by Felix Fröhlich, Jun 18 2016
a(9)-a(11) from Giovanni Resta, Jun 20 2016

A253685 Primes r with A253683(n) > A253684(n) > r such that (A253683(n), A253684(n), r) is a Wieferich triple.

Original entry on oeis.org

3, 13, 2, 1657, 2, 83, 5, 431, 5, 199, 3
Offset: 1

Views

Author

Felix Fröhlich, Jan 09 2015

Keywords

Comments

In analogy to a Wieferich pair, a set of three primes p, q, r can be called a 'Wieferich triple' if its members satisfy either of the following two sets of congruences:
p^(q-1) == 1 (mod q^2), q^(r-1) == 1 (mod r^2), r^(p-1) == 1 (mod p^2)
p^(r-1) == 1 (mod r^2), r^(q-1) == 1 (mod q^2), q^(p-1) == 1 (mod p^2)
a(9) must have A253683(n) > 121637. - Felix Fröhlich, Jun 18 2016
a(12) must have A253683(n) > 5*10^6. - Giovanni Resta, Jun 20 2016

Crossrefs

Programs

  • PARI
    forprime(p=1, , forprime(q=1, p, forprime(r=1, q, if((Mod(p, q^2)^(q-1)==1 && Mod(q, r^2)^(r-1)==1 && Mod(r, p^2)^(p-1)==1) || (Mod(p, r^2)^(r-1)==1 && Mod(r, q^2)^(q-1)==1 && Mod(q, p^2)^(p-1)==1), print1(r, ", ")))))

Extensions

a(8) from Felix Fröhlich, Jun 18 2016
Name edited by Felix Fröhlich, Jun 18 2016
a(9)-a(11) from Giovanni Resta, Jun 20 2016

A297846 Primes p such that p is the largest member of a Wieferich tuple.

Original entry on oeis.org

71, 359, 487, 863, 1069, 1093, 1483, 1549, 2281, 3511, 4871, 6451, 6733, 7393, 12049, 13691, 14107, 14149, 15377, 17401, 18787, 20771, 29573, 32933, 35747, 39233, 44483, 46021, 48947, 49559, 54787, 54979, 59197, 60493, 69401, 69653, 77263, 77867, 105323, 122327
Offset: 1

Views

Author

Felix Fröhlich, Jan 07 2018

Keywords

Comments

Let p_1, p_2, p_3, ..., p_u be a set P of distinct prime numbers and let m_1, m_2, m_3, ..., m_u be a set V of variables. Then P is a Wieferich u-tuple if there exists a mapping from the elements of P to the elements of V such that each of the following congruences is satisfied:
m_1^(m_2-1) == 1 (mod (m_2)^2), m_2^(m_3-1) == 1 (mod (m_3)^2), ..., m_u^(m_1-1) == 1 (mod (m_1)^2).

Examples

			The primes 31, 79, 251, 263, 421 and 1483 satisfy 31^(79-1) == 1 (mod 79^2), 79^(263-1) == 1 (mod 263^2), 263^(251-1) == 1 (mod 251^2), 251^(421-1) == 1 (mod 421^2), 421^(1483-1) == 1 (mod 1483^2) and 1483^(31-1) == 1 (mod 31^2), so those primes form a Wieferich tuple. Since 1483 is the largest member of the tuple, 1483 is a term of the sequence.
		

Crossrefs

Supersequence of A253683, A266829 and A289899.
Supersequence of column 1 of A271100.

Programs

  • PARI
    findwiefs(vec, lim) = my(v=[]); for(k=1, #vec, forprime(p=1, lim, if(Mod(vec[k], p^2)^(p-1)==1, v=concat(v, [p])))); vecsort(v, , 8)
    newprimes(v, w) = setminus(w, v)
    is(n) = my(v=findwiefs([n], n), w=[], np=[]); while(1, w=findwiefs(v, n); if(newprimes(v, w)==[], return(0), if(setsearch(vecsort(newprimes(v, w)), n) > 0, return(1))); v=concat(v, newprimes(v, w)); v=vecsort(v, , 8))
    forprime(p=1, , if(is(p), print1(p, ", ")))

Extensions

More terms from Felix Fröhlich, Jan 22 2018

A271100 Triangular array read by rows: T(n, k) = k-th largest member of lexicographically earliest Wieferich n-tuple that contains no duplicate members, read by rows, or T(n, k) = 0 if no Wieferich n-tuple exists.

Original entry on oeis.org

0, 1093, 2, 71, 11, 3, 3511, 19, 13, 2, 359, 331, 71, 11, 3, 359, 331, 307, 71, 11, 3, 359, 331, 307, 71, 19, 11, 3, 863, 359, 331, 71, 23, 13, 11, 3, 863, 359, 331, 307, 71, 19, 13, 11, 3, 863, 467, 359, 331, 307, 71, 19, 13, 11, 3
Offset: 1

Views

Author

Felix Fröhlich, Mar 30 2016

Keywords

Comments

Let p_1, p_2, p_3, ..., p_u be a set P of distinct prime numbers and let m_1, m_2, m_3, ..., m_u be a set V of variables. Then P is a Wieferich u-tuple if there exists a mapping from the elements of P to the elements of V such that each of the following congruences is satisfied:
m_1^(m_2-1) == 1 (mod (m_2)^2), m_2^(m_3-1) == 1 (mod (m_3)^2), ..., m_u^(m_1-1) == 1 (mod (m_1)^2).
For finding candidate values for m_1 given some m_u, one checks primes higher than m_u for primes satisfying m_u^(m_1-1) == 1 (mod (m_1)^2). For example, to see what we could get if m_u = 2, we check up to say m_1 = 1,000,000 to get candidates for m_1. This would give m_1 in {1093, 3511}. - David A. Corneth, May 14 2016

Examples

			For n = 1: There is no Wieferich singleton (1-tuple), because no prime p satisfies the congruence p^(p-1) == 1 (mod p^2), so T(1, 1) = 0.
For n = 4: The primes 3511, 19, 13, 2 satisfy the congruences 3511^(19-1) == 1 (mod 19^2), 19^(13-1) == 1 (mod 13^2), 13^(2-1) == 1 (mod 2^2) and 2^(3511-1) == 1 (mod 3511^2) and thus form a "Wieferich quadruple". Since this is the lexicographically earliest such set of primes, T(4, 1..4) = 3511, 19, 13, 2.
Triangle starts:
  n=1:     0;
  n=2:  1093,   2;
  n=3:    71,  11,   3;
  n=4:  3511,  19,  13,   2;
  n=5:   359, 331,  71,  11,   3;
  n=6:   359, 331, 307,  71,  11,   3;
  n=7:   359, 331, 307,  71,  19,  11,   3;
  n=8:   863, 359, 331,  71,  23,  13,  11,   3;
  n=9:   863, 359, 331, 307,  71,  19,  13,  11,   3;
  n=10:  863, 467, 359, 331, 307,  71,  19,  13,  11,   3;
  ....
		

Crossrefs

Programs

  • PARI
    ulimupto(u,{llim=2}) = {my(l=List());
    forprime(i=nextprime(llim+1),u,if(Mod(llim,i^2)^(i-1)==1,listput(l,i)));l} \\ David A. Corneth, May 14 2016
    \\tests if a tuple is a valid Wieferich n-tuple.
    
  • PARI
    istuple(v) = {if(#Set(v)==#v,return(0));for(j=0,(#v-1)!-1, w=vector(#v,k,v[numtoperm(#v,j)[k]]); if(sum(i=2,#w,Mod(w[i-1],w[i]^2)^(w[i]-1)==1)+(Mod(w[1],w[#w])^(w[#w]-1)==1)==#w,return(1)));0} \\ David A. Corneth, May 15 2016
    
  • Sage
    wief = DiGraph([prime_range(3600), lambda p, q: power_mod(p, q-1, q^2)==1])
    sc = [[0]] + [sorted(c[1:], reverse=1) for c in wief.all_simple_cycles()]
    tbl = [sorted(filter(lambda c: len(c)==n, sc))[0] for n in range(1, len(sc[-1]))]
    for t in tbl: print('n=%d:'% len(t), ', '.join("%s"%i for i in t)) # Bruce Leenstra, May 18 2016

Extensions

a(11)-a(15) from Felix Fröhlich, Apr 26 2016
More terms from Bruce Leenstra, May 18 2016
Showing 1-4 of 4 results.