cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A253721 Triprimes modulo 10.

Original entry on oeis.org

8, 2, 8, 0, 7, 8, 0, 2, 4, 5, 0, 2, 3, 6, 8, 0, 5, 6, 8, 2, 8, 9, 2, 5, 0, 4, 6, 7, 4, 5, 0, 8, 7, 8, 3, 4, 4, 5, 0, 1, 2, 4, 5, 2, 6, 8, 0, 5, 7, 2, 2, 0, 1, 6, 8, 2, 4, 5, 6, 5, 8, 1, 6, 8, 3, 5, 9, 2, 4, 5, 6, 0, 2, 0, 6, 8, 2, 5, 2, 3, 8, 3, 5, 4, 6, 7
Offset: 1

Views

Author

Wesley Ivan Hurt, May 02 2015

Keywords

Comments

Last digit of triprimes (A014612).

Crossrefs

Cf. A010879 (final digit of n), A014612 (triprimes).
Cf. A007652 (primes mod 10), A106146 (semiprimes mod 10).
Cf. A255646 (subsequence).

Programs

  • Haskell
    a253721 = flip mod 10 . a014612  -- Reinhard Zumkeller, May 05 2015
    
  • Maple
    with(numtheory): A253721:=n->`if`(bigomega(n) = 3, n mod 10, NULL): seq(A253721(n), n=1..500);
  • Mathematica
    Mod[#, 10] & /@ Select[Range[500], PrimeOmega[#] == 3 &]
  • PARI
    do(x)=my(v=List(), t); forprime(p=2, x\4, forprime(q=2, min(x\(2*p), p), t=p*q; forprime(r=2, min(x\t, q), listput(v, t*r)))); Set(v)%10 \\ Charles R Greathouse IV, Aug 30 2017
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange, integer_nthroot
    def A253721(n):
        def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(x//k)+1),a)))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m%10 # Chai Wah Wu, Aug 17 2024

Formula

a(n) = A010879(A014612(n)). - Michel Marcus, May 03 2015