A253721 Triprimes modulo 10.
8, 2, 8, 0, 7, 8, 0, 2, 4, 5, 0, 2, 3, 6, 8, 0, 5, 6, 8, 2, 8, 9, 2, 5, 0, 4, 6, 7, 4, 5, 0, 8, 7, 8, 3, 4, 4, 5, 0, 1, 2, 4, 5, 2, 6, 8, 0, 5, 7, 2, 2, 0, 1, 6, 8, 2, 4, 5, 6, 5, 8, 1, 6, 8, 3, 5, 9, 2, 4, 5, 6, 0, 2, 0, 6, 8, 2, 5, 2, 3, 8, 3, 5, 4, 6, 7
Offset: 1
Links
Crossrefs
Programs
-
Haskell
a253721 = flip mod 10 . a014612 -- Reinhard Zumkeller, May 05 2015
-
Maple
with(numtheory): A253721:=n->`if`(bigomega(n) = 3, n mod 10, NULL): seq(A253721(n), n=1..500);
-
Mathematica
Mod[#, 10] & /@ Select[Range[500], PrimeOmega[#] == 3 &]
-
PARI
do(x)=my(v=List(), t); forprime(p=2, x\4, forprime(q=2, min(x\(2*p), p), t=p*q; forprime(r=2, min(x\t, q), listput(v, t*r)))); Set(v)%10 \\ Charles R Greathouse IV, Aug 30 2017
-
Python
from math import isqrt from sympy import primepi, primerange, integer_nthroot def A253721(n): def f(x): return int(n+x-sum(primepi(x//(k*m))-b for a,k in enumerate(primerange(integer_nthroot(x,3)[0]+1)) for b,m in enumerate(primerange(k,isqrt(x//k)+1),a))) m, k = n, f(n) while m != k: m, k = k, f(k) return m%10 # Chai Wah Wu, Aug 17 2024
Comments