cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A029747 Numbers of the form 2^k times 1, 3 or 5.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 20, 24, 32, 40, 48, 64, 80, 96, 128, 160, 192, 256, 320, 384, 512, 640, 768, 1024, 1280, 1536, 2048, 2560, 3072, 4096, 5120, 6144, 8192, 10240, 12288, 16384, 20480, 24576, 32768, 40960, 49152, 65536, 81920, 98304, 131072, 163840, 196608
Offset: 1

Views

Author

Keywords

Comments

Fixed points of the Doudna sequence: A005940(a(n)) = A005941(a(n)) = a(n). - Reinhard Zumkeller, Aug 23 2006
Subsequence of A103969. - R. J. Mathar, Mar 06 2010
Question: Is there a simple proof that A005940(c) = c would never allow an odd composite c as a solution? See also my comments in A163511 and in A335431 concerning similar problems, also A364551 and A364576. - Antti Karttunen, Jul 28 & Aug 11 2023

Examples

			128 = 2^7 * 1 is in the sequence as well as 160 = 2^5 * 5. - _David A. Corneth_, Sep 18 2020
		

Crossrefs

Subsequence of the following sequences: A103969, A253789, A364541, A364542, A364544, A364546, A364548, A364550, A364560, A364565.
Even terms form a subsequence of A320674.

Programs

  • Mathematica
    m = 200000; Select[Union @ Flatten @ Outer[Times, {1, 3, 5}, 2^Range[0, Floor[Log2[m]]]], # < m &] (* Amiram Eldar, Oct 15 2020 *)
  • PARI
    is(n) = n>>valuation(n, 2) <= 5 \\ David A. Corneth, Sep 18 2020
    
  • Python
    def A029747(n):
        if n<3: return n
        a, b = divmod(n,3)
        return 1<Chai Wah Wu, Apr 02 2025

Formula

a(n) = if n < 6 then n else 2*a(n-3). - Reinhard Zumkeller, Aug 23 2006
G.f.: (1+x+x^2)^2/(1-2*x^3). - R. J. Mathar, Mar 06 2010
Sum_{n>=1} 1/a(n) = 46/15. - Amiram Eldar, Oct 15 2020

Extensions

Edited by David A. Corneth and Peter Munn, Sep 18 2020

A252753 Tree of Eratosthenes: a(0) = 1, a(1) = 2; after which, a(2n) = A250469(a(n)), a(2n+1) = 2 * a(n).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 9, 8, 7, 10, 15, 12, 25, 18, 21, 16, 11, 14, 27, 20, 35, 30, 33, 24, 49, 50, 51, 36, 55, 42, 45, 32, 13, 22, 39, 28, 65, 54, 57, 40, 77, 70, 87, 60, 85, 66, 69, 48, 121, 98, 147, 100, 125, 102, 105, 72, 91, 110, 123, 84, 115, 90, 93, 64, 17, 26, 63, 44, 95, 78, 81, 56, 119, 130, 159, 108, 145, 114, 117, 80
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2015

Keywords

Comments

This sequence can be represented as a binary tree. Each child to the left is obtained by applying A250469 to the parent, and each child to the right is obtained by doubling the parent:
1
|
...................2...................
3 4
5......../ \........6 9......../ \........8
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
7 10 15 12 25 18 21 16
11 14 27 20 35 30 33 24 49 50 51 36 55 42 45 32
etc.
Sequence A252755 is the mirror image of the same tree. A253555(n) gives the distance of n from 1 in both trees.

Crossrefs

Inverse: A252754.
Row sums: A253787, products: A253788.
Fixed points of a(n-1): A253789.
Similar permutations: A005940, A252755, A054429, A250245.

Programs

  • Mathematica
    (* b = A250469 *)
    b[1] = 1; b[n_] := If[PrimeQ[n], NextPrime[n], m1 = p1 = FactorInteger[n][[ 1, 1]]; For[k1 = 1, m1 <= n, m1 += p1; If[m1 == n, Break[]]; If[ FactorInteger[m1][[1, 1]] == p1, k1++]]; m2 = p2 = NextPrime[p1]; For[k2 = 1, True, m2 += p2, If[FactorInteger[m2][[1, 1]] == p2, k2++]; If[k1+2 == k2, Return[m2]]]];
    a[0] = 1; a[1] = 2; a[n_] := a[n] = If[EvenQ[n], b[a[n/2]], 2 a[(n-1)/2]];
    Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 08 2016 *)

Formula

a(0) = 1, a(1) = 2; after which, a(2n) = A250469(a(n)), a(2n+1) = 2 * a(n).
As a composition of related permutations:
a(n) = A252755(A054429(n)).
a(n) = A250245(A005940(1+n)).
Other identities. For all n >= 1:
A055396(a(n)) = A001511(n). [A005940 has the same property.]
a(A003945(n)) = A001248(n) for n>=1. - Peter Luschny, Jan 13 2015

A252754 Inverse of "Tree of Eratosthenes" permutation: a(1) = 0, after which, a(2n) = 1 + 2*a(n), a(2n+1) = 2 * a(A268674(2n+1)).

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 14, 33, 256, 23, 12, 65, 18, 35, 512, 21, 1024, 31, 22, 129, 20, 27, 2048, 257, 34, 39, 4096, 29, 8192, 67, 30, 513, 16384, 47, 24, 25, 26, 131, 32768, 37, 28, 71, 38, 1025, 65536, 43, 131072, 2049, 66, 63, 36, 45, 262144, 259, 46, 41, 524288, 55, 1048576, 4097, 130, 515, 40
Offset: 1

Views

Author

Antti Karttunen, Jan 02 2015

Keywords

Crossrefs

Inverse: A252753.
Fixed points of a(n)+1: A253789.
Similar permutations: A156552, A252756, A054429, A250246, A269388.
Differs from A156552 for the first time at n=21, where a(21) = 14, while A156552(21) = 18.

Programs

Formula

a(1) = 0, after which, a(2n) = 1 + 2*a(n), a(2n+1) = 2 * a(A268674(2n+1)).
As a composition of related permutations:
a(n) = A054429(A252756(n)).
a(n) = A156552(A250246(n)).
From Antti Karttunen, Mar 31 2018: (Start)
A000120(a(n)) = A253557(n).
A069010(a(n)) = A302041(n).
A132971(a(n)) = A302050(n).
A106737(a(n)) = A302051(n).
(End)

Extensions

Name edited and formula corrected by Antti Karttunen, Mar 31 2018

A253790 a(1) = 1; thereafter, odd numbers such that A055396(n) = A001511(n-1).

Original entry on oeis.org

1, 3, 5, 15, 27, 39, 51, 63, 75, 85, 87, 99, 111, 123, 125, 135, 147, 159, 171, 183, 195, 205, 207, 209, 217, 219, 231, 243, 245, 255, 267, 279, 291, 303, 315, 325, 327, 329, 339, 351, 363, 365, 375, 387, 399, 411, 423, 435, 445, 447, 459, 471, 481, 483, 485, 495, 507, 519, 531, 543, 553, 555
Offset: 1

Views

Author

Antti Karttunen, Jan 13 2015

Keywords

Comments

After 1, all such odd numbers whose smallest prime factor A020639(n) = A000040(k+1), where k = A007814(n-1), the 2-adic valuation of the preceding even number.
Any odd number present in A253789 must be one of these terms.

Crossrefs

Showing 1-4 of 4 results.