cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A253940 Primes p such that (p^2 + 5)/6, (p^4 + 5)/6, and (p^8 + 5)/6 are prime.

Original entry on oeis.org

39367, 52163, 67103, 79631, 100981, 280547, 318457, 530711, 605123, 815401, 833923, 834947, 928871, 1313857, 1734067, 1750069, 1800973, 2163979, 2427137, 2598119, 2611027, 2754991, 2764187, 2836259, 3040757, 3101309, 3118697, 3465953, 3646693, 4014809
Offset: 1

Views

Author

Zak Seidov, Jan 20 2015

Keywords

Crossrefs

Subsequence of A253925. Cf. A118915, A247478, A253939.

Programs

  • Magma
    [p: p in PrimesUpTo(10^7) | IsPrime((p^2+5) div 6) and IsPrime((p^4+5) div 6) and IsPrime((p^8+5) div 6)]; // Vincenzo Librandi, Jan 21 2015
  • Mathematica
    Select[Prime[Range[10^6]], PrimeQ[(#^2 + 5) / 6] &&PrimeQ[(#^4 + 5) / 6] &&PrimeQ[(#^8 + 5) / 6] &] (* Vincenzo Librandi, Jan 21 2015 *)
    Select[Prime[Range[300000]],AllTrue[({#^2,#^4,#^8}+5)/6,PrimeQ]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 15 2021 *)

A253976 Primes p such that (p^2 + 5)/6, (p^4 + 5)/6, (p^6 + 5)/6 and (p^8 + 5)/6 are prime.

Original entry on oeis.org

67103, 7524593, 9938069, 10125793, 13042637, 55741139, 55792241, 58429099, 77618323, 92713879, 94554613, 96242761, 103774049, 119753549, 141725501, 142915193, 164899799, 165227399, 173202247, 174728233, 178411771, 184279409, 184356703, 186622003, 195863347, 200406977, 239488649
Offset: 1

Views

Author

Zak Seidov, Jan 21 2015

Keywords

Crossrefs

Subsequence of A253939. Cf. A118915, A247478, A253939, A253940, A253941.

Programs

  • Mathematica
    Select[Prime[Range[132*10^5]],AllTrue[(#^Range[2,8,2]+5)/6,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, May 11 2018 *)
  • PARI
    forprime(p=1,10^7,k=0;for(i=1,4,P=(p^(2*i)+5)/6;if(P\1==P,if(ispseudoprime(P),k++);if(!ispseudoprime(P),k=0;break));if(P\1!=P,k=0;break));if(k,print1(p,", "))) \\ Derek Orr, Jan 21 2015
Showing 1-2 of 2 results.