cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A253941 Primes p such that (p^2 + 5)/6, (p^4 + 5)/6, (p^6 + 5)/6, (p^8 + 5)/6 and (p^10 + 5)/6 are all prime.

Original entry on oeis.org

184279409, 619338131, 913749803, 1057351301, 1507289869, 1600204213, 2845213937, 4725908767, 4760956439, 5374709801, 5518707641, 8724256757, 9044067313, 9387396269, 10992352517, 11937043567, 13493126359, 13593105793, 17891702891, 17897035213, 17954907767, 19690938161, 20227580927, 20922685813, 21313027583, 21717176851
Offset: 1

Views

Author

Zak Seidov, Jan 20 2015

Keywords

Comments

The sequence contains all terms up to 10^10. There are no terms as yet for which (p^12 + 5)/6 is also prime.
No terms < 10^11 with (p^12 + 5)/6 prime. - Chai Wah Wu, Jan 27 2015

Crossrefs

Subsequence of A253976.

Programs

  • PARI
    lista(nn) = forprime(p=5, nn, if(ispseudoprime((p^2 + 5)/6) && ispseudoprime((p^4 + 5)/6) && ispseudoprime((p^6 + 5)/6) && ispseudoprime((p^8 + 5)/6) && ispseudoprime((p^10 + 5)/6), print1(p, ", "))); \\ Jinyuan Wang, Mar 01 2020
  • Python
    from gmpy2 import is_prime, t_divmod
    A253941_list = []
    for p in range(1,10**6,2):
        if is_prime(p):
            p2, x = p**2, 1
            for i in range(5):
                x *= p2
                q, r = t_divmod(x+5,6)
                if r or not is_prime(q):
                    break
            else:
                A253941_list.append(p) # Chai Wah Wu, Jan 22 2015
    

Extensions

a(15)-a(26) from Chai Wah Wu, Jan 22 2015

A254039 Primes p such that (p^3 + 2)/3, (p^5 + 2)/3 and (p^7 + 2)/3 are prime.

Original entry on oeis.org

524521, 1090891, 1383391, 2633509, 3371059, 4872331, 7304131, 7756669, 8819119, 8877331, 11536471, 12290851, 13362211, 13509649, 14658499, 15359401, 17094151, 17582329, 18191179, 18550891, 19416259, 20465209, 21971629, 22519531, 22619431, 25972561, 27155881, 29281699
Offset: 1

Views

Author

K. D. Bajpai, Jan 23 2015

Keywords

Comments

All the terms in this sequence are 1 mod 9.

Examples

			a(1) = 524521;
(524521^3 + 2)/3 = 48102471044890921;
(524521^5 + 2)/3 = 13234061480615091039311002201;
(524521^7 + 2)/3 = 3640985160809159281478976663465873196681;
all four are prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesInInterval(3, 10000000) | IsPrime((p^3 + 2) div 3) and IsPrime((p^5 + 2) div 3) and IsPrime((p^7 + 2) div 3)]; // Vincenzo Librandi, Mar 27 2015
  • Mathematica
    Select[Prime[Range[10^7]], PrimeQ[(#^3 + 2)/3] && PrimeQ[(#^5 + 2)/3] && PrimeQ[(#^7 + 2)/3] &]
  • PARI
    is(n)=n%9==1 && isprime(n) && isprime((n^3+2)/3) && isprime((n^5+2)/3) && isprime((n^7+2)/3) \\ Charles R Greathouse IV, Jan 23 2015
    

A256811 Primes p such that (p^2+2)/3 and (p^4+2)/3 are prime.

Original entry on oeis.org

37, 521, 881, 1619, 2053, 2213, 2341, 3527, 3637, 3727, 4157, 5147, 7019, 10009, 10891, 12277, 14741, 15913, 16273, 17747, 18757, 24499, 25307, 25577, 26209, 27073, 31481, 31517, 32833, 35083, 36739, 36791, 39079, 40231, 40949, 41039, 42013, 42461, 42767, 47917
Offset: 1

Views

Author

K. D. Bajpai, Apr 15 2015

Keywords

Examples

			a(1) = 37; (37^2 + 2)/3 = 457; (37^4 + 2)/3 = 624721; all three are prime.
		

Crossrefs

Programs

  • Magma
    [p: p in PrimesUpTo(5*10^4) | IsPrime((p^2+2) div 3)  and IsPrime((p^4+2) div 3 )]; // Vincenzo Librandi, Apr 20 2015
  • Mathematica
    Select[Prime[Range[10^4]], PrimeQ[(#^2 + 2)/3] && PrimeQ[(#^4 + 2)/3] &]
  • PARI
    forprime(p=1,10^5,if(!((p^2+2)%3)&&!((p^4+2)%3)&&isprime((p^2+2)/3)&&isprime((p^4+2)/3),print1(p,", "))) \\ Derek Orr, Apr 16 2015
    
Showing 1-3 of 3 results.